题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576

题目:要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。

Input

数据的第一行是一个T,表示有T组数据。  每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。

Output

对应每组数据输出(A/B)%9973。

Sample Input

2
1000 53
87 123456789

Sample Output

7922
6060

题目分析:

1.已知n,B的值,要求(A/B)%9973的结果。其中n=A%9973,gcd(B,9973)=1;

假设 ans 是(A / B)%9973的结果,即(A / B)%9973=ans

可知存在一个x使得 9973*x+ans=(A / B)

所以:A=9973*Bx+ans*B..........(1)

又因为 n=A%9973,所以存在一个y ,使得A=9973*y+n.............(2)

由(1)(2)式得9973*y+n=9973*Bx+ans*B

转换后得:n=9973Bx+ans*B-9973y=9973(Bx-y)+ans*B====>(两边同时除以n后得到)(ans/n)*B+(Bx-y)/n*9973=1........(3)

由已知gcd(B,9973)=1......(4)

由(3)(4)条件得知,可以将式子看成是ax+by=1的形式

运用扩展欧几里得算法能够求出  ans/n  的值(假设为res),最终的结果为 res*n;

代码实现:

#include<cstdio>
#include<iostream>
using namespace std;
void exgcd(int a,int b,int &x,int &y)
{
  if(b==)
  {
   x=;
   y=;
   return ;
  }
  exgcd(b,a%b,x,y);
int t=x;
   x=y;
   y=t-a/b*y;
}
int main()
{
int T,n,b,x,y;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&b);
exgcd(b,,x,y);
x=x*n;
x=(x%+)%;//防止x为负数
printf("%d\n",x);
}
return ;
}

hdu1576(扩展欧几里得)的更多相关文章

  1. HDU1576(扩展欧几里得)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  3. UVA 12169 Disgruntled Judge 枚举+扩展欧几里得

    题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...

  4. UVA 10090 Marbles 扩展欧几里得

    来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...

  5. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

  6. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  7. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  8. poj 2142 扩展欧几里得解ax+by=c

    原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...

  9. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  10. Codeforces7C 扩展欧几里得

    Line Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

随机推荐

  1. luogu P4074 [WC2013]糖果公园

    传送门 这种题显然要用树上莫队 何为树上莫队?就是在树上跑莫队算法就是先把树分块,然后把询问离线,按照左端点所在块为第一关键字,右端点所在块为第二关键字,时间戳(如果有修改操作)为第三关键字排序,然后 ...

  2. <转载>Mac下,使用sshpass让iterm2支持多ssh登录信息保存

    windows里有个Xshell非常的方便好使,因为它能保存你所有的ssh登录帐号信息.MAC下并没有xshell,有些也提供这样的功能,但效果都不好.iterm2是很好的终端,但却不能很好的支持多p ...

  3. 根据href给当前导航添加样式

    var href = window.location.href.split('/')[window.location.href.split('/').length-1].substr(0,20); i ...

  4. shiroWeb项目-登陆与退出实现(九)

    原理 使用FormAuthenticationFilter过虑器实现 ,原理如下: 将用户没有认证时,请求loginurl进行认证,用户身份和用户密码提交数据到loginurl FormAuthent ...

  5. kali linux 下搭建git服务器

    参考:http://www.cnblogs.com/dee0912/p/5815267.html https://www.liaoxuefeng.com/wiki/001373951630592960 ...

  6. Linux 搭建 nexus 私服【转】

    原文:https://yq.aliyun.com/articles/5981 第8章 私服nexus 本章详细介绍了nexus的安装过程,设置maven从私服下载构件,以及发布构件至nexus. 8. ...

  7. Linux磁盘分区、挂载

    ⒈Linux下磁盘说明 1)Linux硬盘分IDE硬盘和SCSI硬盘,目前基本上是SCSI硬盘. 2)对于IDE硬盘,使用“hdx~”标识符,“hd”代表IDE硬盘.   对于SCSI硬盘,使用“sd ...

  8. Modelsim SE 破解教程

    第一步:打开我们提供的破解工具包. 第二步:拷贝crack.bat和MentorKG.exe到"C:\modeltech64_10.2c\win64"路径下,如果你的电脑为32位, ...

  9. linux学习笔记1——指令的基本格式及基本文件操作

    从今天开始就正式踏上了linux的学习历程.linux作为绝大多数服务器采用的操作系统,是每个开发人员都非常有必要掌握的操作系统.初学时,我没有直接在电脑上安装linux操作系统,而是采用了虚拟机的方 ...

  10. C# 使用Win32 API将1个EXE程序嵌入另1个程序中

    已经干到天快亮了,就不废话直接贴点儿代码吧 ; ; /// <summary> /// 查找窗口 ///第一个参数是窗口的标题,第二个参数可直接用 null ///通过窗口的标题查找对应的 ...