题意 给了n个点的数 每个点有一个w[i]权值,如果你选择了i这个点那么距离i这个点距离为w[i]的点将被除去,最后问 选则尽量少的点把这n个点全部删除

1<=n<=100000, 0<=w<=100,

down[i][j]表示以i为根节点的树 在他的子树中在距离他 j距离 范围内存在至少一个点没有被除去所选择的最少点数

up[i][j] 表示以i为根的树 他的子树全部都被除去,并且距离他为j的其他点可被除去 所选择的最小点数

考虑状态转移

如果第i个点不选

那么

j=0时

down[i][0]=sigma(up[v][0]){v为i的孩子}

up[i][0] =min(up[i][0], up[v][1]+down[i][0]-up[v][0]){v为i的孩子}

j!=0的时候

down[i][j]=down[i][j]+down[v][j-1](v为i的孩子)

up[i][j]=min(up[i][j],up[v][j+1]+down[i][j]-down[v][j-1]){v为i的孩子 , 自然你也可以在他的孩子中在j范围内取更多的点,但是好好想想这样是没有必要的}

选了这个点

那么up[i][j]=min( up[i][j] , Sigma(G[v][w[i]-1]) ) {v为i的孩子,自然也可以选择更进的点 但是也是没有必要的 因为我们每次都更新了G[v][w[i]-1]的值 }

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <string.h>
using namespace std;
const int maxn =+;
const int maxm=+;
int up[maxn][maxm],down[maxn][maxm],w[maxn];
vector<int>G[maxn];
int n;
void dfs(int cur, int per)
{
for(int i=; i<=; i++)up[cur][i]=n;
memset(down[cur],,sizeof(down[cur]));
int siz =G[cur].size();
int sum=;
for(int i=; i<siz; i++)
{
int to=G[cur][i];
if(to==per)continue;
dfs(to,cur);
if(w[cur]) sum+=down[to][w[cur]-];
else sum+=up[to][];
down[cur][]+=up[to][];
for(int j=; j<=; j++)
down[cur][j]+=down[to][j-];
}
for(int i=; i<siz; i++)
{
int to=G[cur][i];
if(to==per)continue;
up[cur][]=min(up[cur][],up[to][]+down[cur][]-up[to][]);
for(int j=; j<; j++)
up[cur][j]=min(up[cur][j],up[to][j+]+down[cur][j]-down[to][j-]);
}
for(int i=; i<=w[cur]; i++)up[cur][i]=min(up[cur][i],sum);
for(int i=; i>=;i--)up[cur][i]=min(up[cur][i],up[cur][i+]);
down[cur][]=min(down[cur][],up[cur][]);
for(int i=; i<=; i++)
down[cur][i]=min(down[cur][i],down[cur][i-]);
}
int main()
{
while(scanf("%d",&n)==)
{
for(int i=; i<=n; i++)
{
scanf("%d",&w[i]);
G[i].clear();
}
for(int i=; i<n; i++)
{
int a,b;
scanf("%d%d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
dfs(,);
int ans=n;
for(int i=; i<=; i++)ans=min(ans,up[][i]);
printf("%d\n",ans);
}
return ;
}

hdu5290树形dp的更多相关文章

  1. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  2. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  3. 【BZOJ-4726】Sabota? 树形DP

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved ...

  4. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  5. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  6. BZOJ 2286 消耗战 (虚树+树形DP)

    给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...

  7. POJ2342 树形dp

    原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...

  8. hdu1561 The more, The Better (树形dp+背包)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...

  9. bzoj2500: 幸福的道路(树形dp+单调队列)

    好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...

随机推荐

  1. BZOJ4391 High Card Low Card [Usaco2015 dec](贪心+线段树/set库

    正解:贪心+线段树/set库 解题报告: 算辣直接甩链接qwq 恩这题就贪心?从前往后从后往前各推一次然后找一遍哪个地方最大就欧克了,正确性很容易证明 (这里有个,很妙的想法,就是,从后往前推从前往后 ...

  2. python全栈开发day10

    day10知识点总结 while循环补充: continue,终止当前循环,开始下一次循环 break,终止所有循环 pycharm 技巧1.setting 中搜索 mouse 设置鼠标滚轮 改变字体 ...

  3. 在Java程序中读写windows共享文件夹

    摘要 使用Java通过JCIFS框架读写共享文件夹,使用SMB协议,并支持域认证. 项目常常需要有访问共享文件夹的需求,例如读取共享文件夹存储的视频.照片和PPT等文件.那么如何使用Java读写Win ...

  4. TensorFlow设置GPU占用量

    默认开启Tensorflow的session之后,就会占用几乎所有的显存,进行如下设置即可: 指定GPU编号: import os os.environ["CUDA_VISIBLE_DEVI ...

  5. Ubuntu 远程挂载windows的分区

    1.首先需要将windows需要挂载的分区设置为共享 2.在Ubuntu终端输入如下命令: sudo mount -t cifs -o username=***,password=*** //172. ...

  6. ActiveMQ整合spring、同步索引库

    1.   Activemq整合spring 1.1. 使用方法 第一步:引用相关的jar包. <dependency> <groupId>org.springframework ...

  7. 【Python】【面试必看】Python笔试题

    前言 现在面试测试岗位,一般会要求熟悉一门语言(python/java),为了考验求职者的基本功,一般会出 2 个笔试题,这些题目一般不难,主要考察基本功.要是给你一台电脑,在编辑器里面边写边调试,没 ...

  8. centos 关闭selinux

    将SELINUX配置文件设置为 disabled 模式,禁用SELinux vim /etc/selinux/config SELINUX=disabled 然后reboot重启生效 setenfor ...

  9. [OpenCV]代码整理

    开发环境:Windows7, VS2010, OpenCV2.4.10 1.图像特征匹配 // AxFeatureExtract.cpp : 定义控制台应用程序的入口点. // #include &q ...

  10. Day5 函数递归,匿名、内置行数,模块和包,开发规范

    一.递归与二分法 一.递归 1.递归调用的定义 递归调用:在调用一个函数的过程中,直接或间接地调用了函数本身 2.递归分为两类:直接与间接 #直接 def func(): print('from fu ...