hdu5290树形dp
题意 给了n个点的数 每个点有一个w[i]权值,如果你选择了i这个点那么距离i这个点距离为w[i]的点将被除去,最后问 选则尽量少的点把这n个点全部删除
1<=n<=100000, 0<=w<=100,
down[i][j]表示以i为根节点的树 在他的子树中在距离他 j距离 范围内存在至少一个点没有被除去所选择的最少点数
up[i][j] 表示以i为根的树 他的子树全部都被除去,并且距离他为j的其他点可被除去 所选择的最小点数
考虑状态转移
如果第i个点不选
那么
j=0时
down[i][0]=sigma(up[v][0]){v为i的孩子}
up[i][0] =min(up[i][0], up[v][1]+down[i][0]-up[v][0]){v为i的孩子}
j!=0的时候
down[i][j]=down[i][j]+down[v][j-1](v为i的孩子)
up[i][j]=min(up[i][j],up[v][j+1]+down[i][j]-down[v][j-1]){v为i的孩子 , 自然你也可以在他的孩子中在j范围内取更多的点,但是好好想想这样是没有必要的}
选了这个点
那么up[i][j]=min( up[i][j] , Sigma(G[v][w[i]-1]) ) {v为i的孩子,自然也可以选择更进的点 但是也是没有必要的 因为我们每次都更新了G[v][w[i]-1]的值 }
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <string.h>
using namespace std;
const int maxn =+;
const int maxm=+;
int up[maxn][maxm],down[maxn][maxm],w[maxn];
vector<int>G[maxn];
int n;
void dfs(int cur, int per)
{
for(int i=; i<=; i++)up[cur][i]=n;
memset(down[cur],,sizeof(down[cur]));
int siz =G[cur].size();
int sum=;
for(int i=; i<siz; i++)
{
int to=G[cur][i];
if(to==per)continue;
dfs(to,cur);
if(w[cur]) sum+=down[to][w[cur]-];
else sum+=up[to][];
down[cur][]+=up[to][];
for(int j=; j<=; j++)
down[cur][j]+=down[to][j-];
}
for(int i=; i<siz; i++)
{
int to=G[cur][i];
if(to==per)continue;
up[cur][]=min(up[cur][],up[to][]+down[cur][]-up[to][]);
for(int j=; j<; j++)
up[cur][j]=min(up[cur][j],up[to][j+]+down[cur][j]-down[to][j-]);
}
for(int i=; i<=w[cur]; i++)up[cur][i]=min(up[cur][i],sum);
for(int i=; i>=;i--)up[cur][i]=min(up[cur][i],up[cur][i+]);
down[cur][]=min(down[cur][],up[cur][]);
for(int i=; i<=; i++)
down[cur][i]=min(down[cur][i],down[cur][i-]);
}
int main()
{
while(scanf("%d",&n)==)
{
for(int i=; i<=n; i++)
{
scanf("%d",&w[i]);
G[i].clear();
}
for(int i=; i<n; i++)
{
int a,b;
scanf("%d%d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
dfs(,);
int ans=n;
for(int i=; i<=; i++)ans=min(ans,up[][i]);
printf("%d\n",ans);
}
return ;
}
hdu5290树形dp的更多相关文章
- poj3417 LCA + 树形dp
Network Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4478 Accepted: 1292 Descripti ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
- 【BZOJ-4726】Sabota? 树形DP
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 128 Solved ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- 树形DP
切题ing!!!!! HDU 2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...
- BZOJ 2286 消耗战 (虚树+树形DP)
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...
- POJ2342 树形dp
原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...
- hdu1561 The more, The Better (树形dp+背包)
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...
- bzoj2500: 幸福的道路(树形dp+单调队列)
好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...
随机推荐
- 内部排序->插入排序->直接插入排序
文字描述: 将一个记录插入到已排好序的有序表中,从而得到一个新的.记录数增1的有序表 示意图: 算法分析: 时间复杂度为n*n,辅助存储为1,是稳定的排序方法. 代码实现: #include < ...
- Oracle 分区表 收集统计信息 参数granularity
GRANULARITY Determines the granularity of statistics to collect. This value is only relevant for par ...
- java IO(二)大文件复制
package cn.sasa.demo3; import java.io.FileInputStream; import java.io.FileOutputStream; import java. ...
- word2vec训练好的词向量
虽然早就对NLP有一丢丢接触,但是最近真正对中文文本进行处理才深深感觉到自然语言处理的难度,主要是机器与人还是有很大差异的,毕竟人和人之间都是有差异的,要不然不会讲最难研究的人嘞 ~~~~~~~~~~ ...
- 007-atomic包的原理及分析
一.Atomic简介 Atomic包是java.util.concurrent下的另一个专门为线程安全设计的Java包,包含多个原子操作类.这个包里面提供了一组原子变量类.其基本的特性就是在多线程环境 ...
- 入门 Webpack,看这篇就够了
转:https://segmentfault.com/a/1190000006178770 2018年8月25日更新,目前 webpack 已经更新值 4.17.1 ,本文所用到的各种库或多或少有些过 ...
- MySql语句常用命令整理---单表查询
初始化t_employee表 创建t_employee表 -- DROP TABLE IF EXISTS test; CREATE TABLE t_employee ( _id INTEGER PRI ...
- js抽红包分配
将 50000元随机分给10个人,其中3个人必须分到百位数,4个人分到千位数,3个人分到万位数,每个人所得金额 <!DOCTYPE html> <html lang="zh ...
- Python list 和 tuple 使用小记
list和tuple是Python内置的有序集合,一个可变,一个不可变.根据需要来选择使用它们. 1.内置数据类型,列表List >>> appleVersion = ['apple ...
- cocos2d JS-(JavaScript) 检测DOM是否可用
function domReady(f) { if (domReady.done) {//如果已经加载完成 马上执行函数 return f(); } if (domReady.timer) {//如果 ...