倍增法模板题

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
#define maxn 1000
#define DEG 20
struct Edge{
int to,next;
}edge[maxn*maxn*];
int head[maxn],tot;
void addedge(int u,int v){
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
int fa[maxn][DEG];
int deg[maxn];
void bfs(int root){
queue<int> que;
deg[root]=;
fa[root][]=root;
que.push(root);
while(!que.empty()){
int tmp=que.front();
que.pop();
for(int i=;i<DEG;i++)
fa[tmp][i]=fa[fa[tmp][i-]][i-];
for(int i=head[tmp];i!=-;i=edge[i].next){
int v=edge[i].to;
if(v==fa[tmp][]) continue;
deg[v]=deg[tmp]+;
fa[v][]=tmp;
que.push(v);
}
}
}
int lca(int u,int v){
if(deg[u]>deg[v]) swap(u,v);
int hu=deg[u],hv=deg[v],tu=u,tv=v;
for(int det=hv-hu,i=;det;det>>=,i++)
if(det&) tv=fa[tv][i];//将uv提到同一深度
if(tu==tv) return tu;
for(int i=DEG-;i>=;i--){
if(fa[tu][i]==fa[tv][i]) continue;
tu=fa[tu][i];
tv=fa[tv][i];
}
return fa[tu][];
}
int ans[maxn],flag[maxn];
void init(){
tot=;
memset(ans,,sizeof ans);
memset(head,-,sizeof head);
memset(flag,,sizeof flag);
}
int main(){
int n,u,v,m,q;
while(scanf("%d",&n)==){
init();
for(int i=;i<=n;i++){
scanf("%d:(%d)",&u,&m);
while(m--){
scanf("%d",&v);
addedge(u,v);
addedge(v,u);
flag[v]=true;
}
}
int root;
for(int i=;i<=n;i++) if(!flag[i]){root=i;break;}
bfs(root); scanf("%d",&q);
char c;
while(q--){
cin>>c;
scanf("%d %d)",&u,&v);
ans[lca(u,v)]++;
}
for(int i=;i<=n;i++)
if(ans[i]) printf("%d:%d\n",i,ans[i]);
}
return ;
}

poj1470 LCA倍增法的更多相关文章

  1. LCA(最近公共祖先)——LCA倍增法

    一.前人种树 博客:最近公共祖先 LCA 倍增法 博客:浅谈倍增法求LCA 二.沙场练兵 题目:POJ 1330 Nearest Common Ancestors 代码: const int MAXN ...

  2. POJ - 1330 Nearest Common Ancestors(dfs+ST在线算法|LCA倍增法)

    1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST ...

  3. hdu2586 lca倍增法

    倍增法加了边的权值,bfs的时候顺便把每个点深度求出来即可 #include<iostream> #include<cstring> #include<cstdio> ...

  4. 最近公共祖先 LCA 倍增法

    [简介] 解决LCA问题的倍增法是一种基于倍增思想的在线算法. [原理] 原理和同样是使用倍增思想的RMQ-ST 算法类似,比较简单,想清楚后很容易实现. 对于每个节点u , ancestors[u] ...

  5. luogu3379 【模板】最近公共祖先(LCA) 倍增法

    题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...

  6. LCA—倍增法求解

    LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 常见解法一般有三种 这里讲解一种在线算法-倍增 首先我们定义fa[u][j ...

  7. LCA - 倍增法去求第几个节点

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

  8. POJ 1330(LCA/倍增法模板)

    链接:http://poj.org/problem?id=1330 题意:q次询问求两个点u,v的LCA 思路:LCA模板题,首先找一下树的根,然后dfs预处理求LCA(u,v) AC代码: #inc ...

  9. 【模板】Lca倍增法

    Codevs 1036 商务旅行 #include<cstdio> #include<cmath> #include<algorithm> using namesp ...

随机推荐

  1. CF786B Legacy && 线段树优化连边

    线段树优化连边 要求点 \(x\) 向区间 \([L, R]\) 连边, 一次的复杂度上限为 \(O(n)\) 然后弄成线段树的结构 先父子连边边权为 \(0\) 这样连边就只需要连父亲就可以等效于连 ...

  2. Tomcat部署实战

    Tomcat部署实战 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.登录官网下载tomcat软件包(http://tomcat.apache.org/) 1>.在安装to ...

  3. 函数和常用模块【day06】:datetime模块(二)

    本节内容 1.datetime.datetime.now 2.datetime.date.fromtimestamp 3.datetime.timedelta 4.时间替换 1.datetime.da ...

  4. CentOS6.8下查看yum及rpm安装后的软件位置

    参考资料:http://blog.csdn.net/ngvjai/article/details/7997743   http://blog.sina.com.cn/s/blog_976e495701 ...

  5. currentColor

    http://www.zhangxinxu.com/wordpress/2014/10/currentcolor-css3-powerful-css-keyword/

  6. mysql Mac终端操作

    1.启动mysql :brew services start mysql 2.登陆mysql :  mysql -u root -p mysql 命令.      -u 后面接用户名 root超级管理 ...

  7. MySQL指令

    在mysql里:文件夹就是数据库      文件就是表 创建用户: 格式:create user '用户名'@'IP地址' identified by '密码'; 说明:IP地址是用来限制用户只能在哪 ...

  8. luogu P4074 [WC2013]糖果公园

    传送门 这种题显然要用树上莫队 何为树上莫队?就是在树上跑莫队算法就是先把树分块,然后把询问离线,按照左端点所在块为第一关键字,右端点所在块为第二关键字,时间戳(如果有修改操作)为第三关键字排序,然后 ...

  9. loadrunner函数解密之web_reg_save_param

    loadrunner工具的使用,最关键的在于3个地方: A:脚本的编写 B:场景设计 C:性能测试结果分析 其 中难度比较大的第一步是:编写脚本,有很多人对于loadrunner里面的各种函数使用的并 ...

  10. css命名规范: BEM 的命名法

    整理自:前端早读课[第1183期]这些 CSS 命名规范,将省下你大把调试时间 试图解决 3 类问题: 仅从名字就能知道一个 CSS 选择器具体做什么 从名字能大致清楚一个选择器可以在哪里使用 从 C ...