卷积与反卷积以及步长stride
1. 卷积与反卷积
如上图演示了卷积核反卷积的过程,定义输入矩阵为 I(4×4),卷积核为 K(3×3),输出矩阵为 O(2×2):
- 卷积的过程为:Conv(I,W)=O
- 反卷积的过称为:Deconv(W,O)=I(需要对此时的 O 的边缘进行延拓 padding)
2. 步长与重叠
卷积核移动的步长(stride)小于卷积核的边长(一般为正方行)时,变会出现卷积核与原始输入矩阵作用范围在区域上的重叠(overlap),卷积核移动的步长(stride)与卷积核的边长相一致时,不会出现重叠现象。
4×4 的输入矩阵 I和 3×3 的卷积核K:
- 在步长(stride)为 1 时,输出的大小为 (4−3+1)×(4−3+1)
现考虑其逆问题,原始输入矩阵为多大时,其与 3×3 的卷积核K 相卷积得到的输出矩阵的大小为 4×4:
- 步长(stride)为 1 时,(x−3+1)×(x−3+1)=4×4
- x=6
卷积与反卷积以及步长stride的更多相关文章
- 卷积与反卷积、步长(stride)与重叠(overlap)
1. 卷积与反卷积 如上图演示了卷积核反卷积的过程,定义输入矩阵为 I(4×4),卷积核为 K(3×3),输出矩阵为 O(2×2): 卷积的过程为:Conv(I,W)=O 反卷积的过称为:Deconv ...
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...
- 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...
- 反卷积Deconvolution
反卷积(转置卷积.空洞卷积(微步卷积))近几年用得较多,本篇博客主要是介绍一下反卷积,尤其是怎么计算反卷积(选择反卷积的相关参数) 图1 空洞卷积(微步卷积)的例子,其中下面的图是输入,上面的图是输出 ...
- 用反卷积(Deconvnet)可视化理解卷积神经网络还有使用tensorboard
『cs231n』卷积神经网络的可视化与进一步理解 深度学习小白——卷积神经网络可视化(二) TensorBoard--TensorFlow可视化 原文地址:http://blog.csdn.net/h ...
- 【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?膨胀卷积
介绍关于空洞卷积的理论可以查看以下链接,这里我们不详细讲理论: 1.Long J, Shelhamer E, Darrell T, et al. Fully convolutional network ...
- 深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?
反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4. ...
- 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...
随机推荐
- Python全栈开发-Day10-进程/协程/异步IO/IO多路复用
本节内容 多进程multiprocessing 进程间的通讯 协程 论事件驱动与异步IO Select\Poll\Epoll——IO多路复用 1.多进程multiprocessing Python ...
- Run keyword if
Wait For Page Ready ${a} Run Keyword And Return Status Page Should Contain 新建 log ${a} Run Keyword I ...
- legend2---开发日志4(常用的链接传值方式有哪些)
legend2---开发日志4(常用的链接传值方式有哪些) 一.总结 一句话总结:常用的其实就是get和post,不过有具体细分 a标签 post表单 js方式拼接url 1.js正则尽量少匹配的符号 ...
- (转) gffcompare和gffread | gtf | gff3 格式文件的分析 | gtf处理 | gtfparse
工具推荐:https://github.com/openvax/gtfparse 真不敢相信,Linux自带的命令会这么强大,从gtf中提取出需要的transcript,看起来复杂,其实一个grep就 ...
- pre打印
echo "<pre>";print_r(var);echo "</pre>";
- TP5中的小知识
在TP5中如果想用select 查询后,变成数组,用toArray()这个函数的话,必须在连接数据库中把 数据集返回类型变成 'resultset_type'=>'\think\Collecti ...
- Selenium-WebDriver驱动对照表
Chrome 对于chrome浏览器,有时候会有闪退的情况,也许是版本冲突的问题,我们要对照着这个表来对照查看是不是webdriver和chrome版本不对 chromedriver版本 支持的Chr ...
- 6月5 Smarty变量调节器
变量调节器:<{$a|变量调节器}> 主要修改此页面的信息来了解变量调节器:test0605/main.php和模板文件:main0605.html 1.利用给定的变量调节器 capita ...
- hbase知识
HBASE是一个高可靠性.高性能.面向列.可伸缩的分布式存储系统 HBASE的目标是存储并处理大型的数据,更具体来说是仅需使用普通的硬件配置,就能够处理由成千上万的行和列所组成的大型数据. HBASE ...
- 四则运算web最终版
经过若干时间的奋战,终于完成了web版四则运算程序.团队成员:井小普.张贺. 设计思想: 在之前的程序基础上两人结合开发web系统. 首先,进行登录注册界面的编写,不同用户,对应不同的错题库,答题记录 ...