题目链接

**详细题解:https://www.cnblogs.com/autsky-jadek/p/4376091.html **

**代码参考自:https://www.cnblogs.com/Sakits/p/8445534.html **

思路好理解,然而就是写了一下午+一晚上。。

\(Description\)

给定一个长为n的序列,每次查询区间中出现次数k1小的数里面的k2小的数。卡空间。

\(Solution\)

将出现次数按权值分块,这样可以实现\(O(1)\)插入,\(O(sqrt(n))\)查询第k1小的出现次数

但是还需要知道第k2小的值,可以每个块维护点的个数棵平衡树,但这样插入复杂度会变高

同样可以在每个块内每个节点再套一个权值分块,同样能够\(O(1)\)插入

但是权值分块的大小是严格值域的,即出现次数为i的值都可能出现在i块里,这样空间无法承受

于是需要分段离散化,对于块i,用出现次数\(>=i\)的\(A_x\)对其离散化。

\(∑tm_i=n\),所以空间是\(O(n)\)的;时间复杂度\(O(m*sqrt(n))\)(证明见上博客 )

//细节。。
#include <cmath>
#include <cstdio>
#include <cctype>
#include <vector>
#include <algorithm>
#define gc() getchar()
#define pb push_back
typedef unsigned short ushort;
const int N=40005; ushort n,size,m,A[N],B[N],bel[N],Ans[N];
int sz1[N],sum1[N],tm[N];//都可能有负
std::vector<ushort> sum2[N]/*某块中存在某数*/,ref[N],rank[N]/*某个数在某块中的位置*/,sz2[N];
struct Ask
{
int l,r,k1,k2,id;
bool operator <(const Ask &a)const
{
return bel[l]==bel[a.l]? r<a.r : bel[l]<bel[a.l];
// return bel[l]==bel[a.l]? ((l-1)/size&1 ? r>a.r : r<a.r) : bel[l]<bel[a.l];
}
}q[N]; inline ushort read()
{
ushort now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int Get_Pos1(int p)//找到k1所在大块、and 具体的套着的那个块
{
int x=1;
for(int i=1; i<=bel[n]; ++i)
if((p-=sz1[i])<=0) {p+=sz1[x=i]; break;}
for(int tmp=std::min((int)n,x*size-1),i=(x-1)*size; i<=tmp; ++i)
if(!(p-=(sum1[i]>0))) return i;
}
int Get_Pos2(int id,int p)
{
int x=1;
for(int i=1; i<sum2[id].size(); ++i)//不能是<bel[sum2[id].size()],不如直接<size,反正它肯定会结束
if((p-=sz2[id][i])<=0) {p+=sz2[id][x=i]; break;}
for(int tmp=std::min((int)sum2[id].size(),x*size),i=(x-1)*size; i<tmp; ++i)//注意vector的边界
if(!(p-=sum2[id][i])) return i;
}
int Query(int k1,int k2)
{
int id=Get_Pos1(k1);
return ref[id][Get_Pos2(id,k2)];
}
inline void Update(int p,int delta)//仅在tm[p]>0(不是if(tm[p]))时加!
{//修改块内的块
sum1[tm[p]]+=delta;//同理 这个也要减掉
if(sum1[tm[p]] && delta==1) ++sz1[bel[tm[p]]];
if(!sum1[tm[p]] && delta==-1) --sz1[bel[tm[p]]];
int pos=rank[p][tm[p]-1];//对于相同数多次出现已是位于不同的块,so 出现次数就不用管了
sz2[tm[p]][bel[pos]]+=delta, sum2[tm[p]][pos]+=delta;
}
inline void Modify(int p,int delta)
{
if(tm[p]>0) Update(p,-1);//要把原先的次数删掉
tm[p]+=delta;
if(tm[p]>0) Update(p,1);
}
//inline void Add(int p)//WA: 没有把之前的sz1减掉
//{
// if(tm[p]>0) Update(p,-1);//要把原先的次数删掉
// ++tm[p];
// if(++sum1[tm[p]]==1) ++sz1[bel[tm[p]]];//对于外面的块 每个出现次数只计算一次
// if(tm[p]>0) Update(p,1);
//}
//inline void Subd(int p)
//{
// if(tm[p]>0) Update(p,-1);
// if(!--sum1[tm[p]]) --sz1[bel[tm[p]]];
// if(--tm[p]>0) Update(p,1);//次数-1后的加上
//} int main()
{
n=read(), size=sqrt(n);
bel[0]=1;//得有bel[0]给vector使
for(int i=1; i<=n; ++i) A[i]=B[i]=read(),++tm[A[i]],bel[i]=i/size+1;//全从0开始分块更方便
std::sort(B+1,B+1+n);
for(int i=1; i<=n; ++i)//Discrete
{
for(int j=1; j<=tm[B[i]]; ++j)
sum2[j].pb(0), rank[B[i]].pb(ref[j].size()), ref[j].pb(B[i]);
tm[B[i]]=0;//去重
}
for(int i=1; i<=n; ++i)
for(int j=0; j<=bel[sum2[i].size()]; ++j) sz2[i].pb(0);//<=!
m=read();
for(int i=1; i<=m; ++i)
q[i].l=read(),q[i].r=read(),q[i].k1=read(),q[i].k2=read(),q[i].id=i;
std::sort(q+1,q+1+m);
for(int l=1,r=0,i=1; i<=m; ++i)
{
while(l<q[i].l) Modify(A[l++],-1);
while(l>q[i].l) Modify(A[--l],1);
while(r<q[i].r) Modify(A[++r],1);
while(r>q[i].r) Modify(A[r--],-1);
Ans[q[i].id]=Query(q[i].k1,q[i].k2);
}
for(int i=1; i<=m; ++i) printf("%d\n",Ans[i]); return 0;
}

BZOJ.3920.Yuuna的礼物(莫队 分块套分块 分段离散化)的更多相关文章

  1. bzoj 3920: Yuuna的礼物

    Description 转眼就要到Karin的生日了!Yuuna她们想为她准备生日礼物!现在有许多礼物被排列成了一个一维序列,每个礼物都有一个价值.Yuuna对这个序列十分感兴趣.因此,你需要多次回答 ...

  2. 【BZOJ 3735】苹果树 树上莫队(树分块+离线莫队+鬼畜的压行)

    2016-05-09 UPD:学习了新的DFS序列分块,然后发现这个东西是战术核导弹?反正比下面的树分块不知道要快到哪里去了 #include<cmath> #include<cst ...

  3. bzoj3920: Yuuna的礼物(莫队+分块套分块)

    思路挺简单的,但是总感觉好难写...码力还是差劲,最后写出来也挺丑的 这题显然是个莫队题,考虑怎么转移和询问... 根据莫队修改多查询少的特点,一般用修改快查询慢的分块来维护.查第$k_1$小的出现次 ...

  4. (原创)BZOJ 2038 小Z的袜子(hose) 莫队入门题+分块

    I - 小Z的袜子(hose) 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z ...

  5. Bzoj 3289: Mato的文件管理 莫队,树状数组,逆序对,离散化,分块

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1539  Solved: 665[Submit][Status][Di ...

  6. BZOJ 3289: Mato的文件管理[莫队算法 树状数组]

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 2399  Solved: 988[Submit][Status][Di ...

  7. BZOJ 3236 AHOI 2013 作业 莫队算法

    题目大意:给出一些数,问在一个区间中不同的数值有多少种,和在一个区间中不同的数值有多少个. 思路:因为没有改动,所以就想到了莫队算法.然后我写了5K+的曼哈顿距离最小生成树,然后果断T了.(100s的 ...

  8. bzoj 4540 [HNOI 2016] 序列 - 莫队算法 - Sparse-Table - 单调栈

    题目传送门 传送点I 传送点II 题目大意 给定一个长度为$n$的序列.询问区间$[l, r]$的所有不同的子序列的最小值的和. 这里的子序列是连续的.两个子序列不同当且仅当它们的左端点或右端点不同. ...

  9. 2019.01.08 bzoj3809: Gty的二逼妹子序列(莫队+权值分块)

    传送门 题意:多组询问,问区间[l,r]中权值在[a,b]间的数的种类数. 看了一眼大家应该都知道要莫队了吧. 然后很容易想到用树状数组优化修改和查询做到O(mnlogamax)O(m\sqrt nl ...

随机推荐

  1. IP分片丢失重传 - Sacrifice的日志 - 网易博客

        尽管IP分片看起来是是透明的,但有一点让人不想使用它:即使只丢失一片数据也要重传整个数据报.为什么会发生这种情况呢?     因为IP层本身没有超时重传的机制--由更高层来负责超时和重传(TC ...

  2. 【ARTS】01_11_左耳听风-20190121~20190127

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  3. Linux mmc framework1:软件架构

    [部分内容来自] http://www.wowotech.net/comm/mmc_framework_arch.html 1. 前言 由eMMC基础技术1:MMC简介中MMC.SD.SDIO的介绍可 ...

  4. 在window是下安装hadoop过程

    详细见http://www.cnblogs.com/kinglau/archive/2013/08/20/3270160.html

  5. python flask安装

    windows环境上,打开命令行,输入pip  list  检查列表中是否安装过flask 安装flask命令:pip install flask 出现Successfully installed等提 ...

  6. 面向对象编程其实很简单——Python 面向对象(初级篇)

    出处:http://www.cnblogs.com/wupeiqi/ 概述 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函 ...

  7. Codeforces 448C Painting Fence(分治法)

    题目链接:http://codeforces.com/contest/448/problem/C 题目大意:n个1* a [ i ] 的木板,把他们立起来,变成每个木板宽为1长为 a [ i ] 的栅 ...

  8. python 全栈开发,Day138(scrapy框架的下载中间件,settings配置)

    昨日内容拾遗 打开昨天写的DianShang项目,查看items.py class AmazonItem(scrapy.Item): name = scrapy.Field() # 商品名 price ...

  9. python 全栈开发,Day58(bootstrap组件,bootstrap JavaScript 插件,后台模板,图表插件,jQuery插件库,Animate.css,swiper,运行vue项目)

    一.bootstrap组件 无数可复用的组件,包括字体图标.下拉菜单.导航.警告框.弹出框等更多功能. 组件和插件的区别? 插件:一个功能,比如js文件 组件:html css js 组件包含插件 面 ...

  10. 对象本田CRV

    <script> window.onload = function (ev) { var vcar = new Car("本田", "CRV", 4 ...