本节内容

------------------

· Spark为什么要分区

· Spark分区原则及方法

· Spark分区案例

· 参考资料

------------------

一、Spark为什么要分区
    分区概念:分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定。

为什么要分区,这个借用别人的一段话来阐述。

数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能。mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变小文件,   从而减少网络传输,但是增加了cpu的计算负载。

   Spark里面io也是不可避免的,但是网络传输spark里面进行了优化:

spark把rdd进行分区(分片),放在集群上并行计算。同一个rdd分片100个,10个节点,平均一个节点10个分区,当进行sum型的计算的时候,先进行每个分区的sum,然后把sum值shuffle传输到主程序进行全局sum,所以进行sum型计算对网络传输非常小。但对于进行join型的计算的时候,需要把数据本身进行shuffle,网络开销很大。

spark是如何优化这个问题的呢?

spark把key-value rdd通过key的hashcode进行分区,而且保证相同的key存储在同一个节点上,这样对改rdd进行key聚合时,就不需要shuffle过程,我们进行mapreduce计算的时候为什么要进行shuffle?,就是说mapreduce里面网络传输主要在shuffle阶段,shuffle的根本原因是相同的key存在不同的节点上,按key进行聚合的时候不得不进行shuffle。shuffle是非常影响网络的,它要把所有的数据混在一起走网络,然后它才能把相同的key走到一起。进行shuffle是存储决定的。

spark从这个教训中得到启发,spark会把key进行分区,也就是key的hashcode进行分区,相同的key,hashcode肯定是一样的,所以它进行分区的时候100t的数据分成10分,每部分10个t,它能确保相同的key肯定在一个分区里面,而且它能保证存储的时候相同的key能够存在同一个节点上。比如一个rdd分成了100份,集群有10个节点,所以每个节点存10份,每一分称为每个分区,spark能保证相同的key存在同一个节点上,实际上相同的key存在同一个分区。

key的分布不均决定了有的分区大有的分区小。没法分区保证完全相等,但它会保证在一个接近的范围。所以mapreduce里面做的某些工作里边,spark就不需要shuffle了,spark解决网络传输这块的根本原理就是这个。

进行join的时候是两个表,不可能把两个表都分区好,通常情况下是把用的频繁的大表事先进行分区,小表进行关联它的时候小表进行shuffle过程。

大表不需要shuffle。
    RDD 内部的数据集合在逻辑上(以及物理上)被划分成多个小集合,这样的每一个小集合被称为分区。像是下面这图中,三个 RDD,每个 RDD 内部都有两个分区。

在源码级别,RDD 类内存储一个 Partition 列表。每个 Partition 对象都包含一个 index 成员,通过 RDD 编号 + index 就能从唯一确定分区的 Block 编号,持久化的 RDD 就能通过这个 Block 编号从存储介质中获得对应的分区数据。

二、Spark分区原则及方法

RDD分区的一个分区原则:尽可能是得分区的个数等于集群核心数目

下面我们仅讨论Spark默认的分区个数,这里分别就parallelize和textFile具体分析其默认的分区数

无论是本地模式、Standalone模式、YARN模式或Mesos模式,我们都可以通过spark.default.parallelism来配置其默认分区个数,若没有设置该值,则根据不同的集群环境确定该值

本地模式:默认为本地机器的CPU数目,若设置了local[N],则默认为N

Apache Mesos:默认的分区数为8

Standalone或YARN:默认取集群中所有核心数目的总和,或者2,取二者的较大值。对于parallelize来说,没有在方法中的指定分区数,则默认为spark.default.parallelism,对于textFile来说,没有在方法中的指定分区数,则默认为min(defaultParallelism,2),而defaultParallelism对应的就是spark.default.parallelism。如果是从hdfs上面读取文件,其分区数为文件分片数(128MB/片)
    如何创建分区,有两种情况,创建 RDD 时和通过转换操作得到新 RDD 时。

对于前者,在调用 textFile 和 parallelize 方法时候手动指定分区个数即可。例如 sc.parallelize(Array(1, 2, 3, 5, 6), 2) 指定创建得到的 RDD 分区个数为 2。
    对于后者,直接调用 repartition 方法即可。实际上分区的个数是根据转换操作对应多个 RDD 之间的依赖关系来确定,窄依赖子 RDD 由父 RDD 分区个数决定,例如 map 操作,父 RDD 和子 RDD 分区个数一致;Shuffle 依赖则由分区器(Partitioner)决定,例如 groupByKey(new HashPartitioner(2)) 或者直接 groupByKey(2) 得到的新 RDD 分区个数等于 2。
三、Spark分区案例
  下次再写......早点睡觉去

四、参考资料

1.http://blog.csdn.net/jiangpeng59/article/details/52754928,Spark基础随笔:分区详解

2.http://blog.csdn.net/zengxiaosen/article/details/52637001-spark的优化-控制数据分区和分布

3.http://blog.csdn.net/jiangpeng59/article/details/52754928

【Spark 深入学习-08】说说Spark分区原理及优化方法的更多相关文章

  1. 【Spark深入学习 -12】Spark程序设计与企业级应用案例02

    ----本节内容------- 1.遗留问题答疑 1.1 典型问题解答 1.2 知识点回顾 2.Spark编程基础 2.1 Spark开发四部曲 2.2 RDD典型实例 2.3 非RDD典型实例 3. ...

  2. 【Spark深入学习-11】Spark基本概念和运行模式

    ----本节内容------- 1.大数据基础 1.1大数据平台基本框架 1.2学习大数据的基础 1.3学习Spark的Hadoop基础 2.Hadoop生态基本介绍 2.1Hadoop生态组件介绍 ...

  3. 【Spark深入学习 -14】Spark应用经验与程序调优

    ----本节内容------- 1.遗留问题解答 2.Spark调优初体验 2.1 利用WebUI分析程序瓶颈 2.2 设置合适的资源 2.3 调整任务的并发度 2.4 修改存储格式 3.Spark调 ...

  4. 【Spark深入学习 -13】Spark计算引擎剖析

    ----本节内容------- 1.遗留问题解答 2.Spark核心概念 2.1 RDD及RDD操作 2.2 Transformation和Action 2.3 Spark程序架构 2.4 Spark ...

  5. 【Spark 深入学习 -09】Spark生态组件及Master节点HA

    ----本节内容------- 1.Spark背景介绍 2.Spark是什么 3.Spark有什么 4.Spark部署 4.1.Spark部署的2方面 4.2.Spark编译 4.3.Spark St ...

  6. 【Spark 深入学习 01】 Spark是什么鬼?

    经过一段时间的学习和测试,是时候给spark的学习经历做一个总结了,对于spark的了解相对晚了写.春节期间(预计是无大事),本博准备推出20篇左右spark系列原创文章(先把牛吹出去再说) ,尽量将 ...

  7. spark SQL学习(认识spark SQL)

    spark SQL初步认识 spark SQL是spark的一个模块,主要用于进行结构化数据的处理.它提供的最核心的编程抽象就是DataFrame. DataFrame:它可以根据很多源进行构建,包括 ...

  8. 【spark 深入学习 03】Spark RDD的蛮荒世界

    RDD真的是一个很晦涩的词汇,他就是伯克利大学的博士们在论文中提出的一个概念,很抽象,很难懂:但是这是spark的核心概念,因此有必要spark rdd的知识点,用最简单.浅显易懂的词汇描述.不想用学 ...

  9. 【Spark深入学习 -15】Spark Streaming前奏-Kafka初体验

    ----本节内容------- 1.Kafka基础概念 1.1 出世背景 1.2 基本原理 1.2.1.前置知识 1.2.2.架构和原理 1.2.3.基本概念 1.2.4.kafka特点 2.Kafk ...

随机推荐

  1. 073 HBASE的读写以及client API

    一:读写思想 1.系统表 hbase:namespace 存储hbase中所有的namespace的信息 hbase:meta rowkey:hbase中所有表的region的名称 column:re ...

  2. eric6中ui文件编译失败,提示找不到puicc5

    1解决办法 在setting中——preference 找到qt设置——pyQT工具文件选择更改为: 我的pyuicc5.exe文件在这个目录下 然后右击编译窗口,就成功了. 如果找不到ui文件,在窗 ...

  3. Spring日记_01 之 Eclipse下的Tomcat服务器配置 以及 Springmvc和Servlet的使用

    安装Tomcat – window – preferences – Server                                                  右键Tomcat v ...

  4. fork调用的底层实现

    fork调用的内核实现: http://www.cnblogs.com/huangwei/archive/2010/05/21/1740794.html http://blog.csdn.net/he ...

  5. char *s 与 char s[ ]的区别

    程序的内存分配 一个由C/C++编译的程序占用的内存分为以下几个部分 1.栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等.其 操作方式类似于数据结构中的栈. 2.堆区( ...

  6. window下mongodb安装和配置

    mongodb安装和配置 1.下载:https://www.mongodb.com 2.解压到盘的根目录下,本人解压到D盘根目录 3.在软件根目录下新建一个文件夹data 4.再新建两个文件夹db.l ...

  7. php手撸轻量级开发(一)

    聊聊本文内容 之前讲过php简单的内容,但是原生永远是不够看的,这次用框架做一些功能性的事情. 但是公司用自己的框架不能拿出来,用了用一些流行的框架比如tp,larveral之类的感觉太重,CI也不顺 ...

  8. Javascript中call,apply,bind的区别

    一.探索call方法原理 Function.prototype.call = function(obj) { // 1.让fn中的this指向obj // eval(this.toString().r ...

  9. HDU 4352 XHXJ's LIS 数位dp lis

    目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...

  10. 提升PHP安全:8个必须修改的PHP默认配置

    很明显,PHP+Mysql+Apache是很流行的web技术,这个组合功能强大,可扩展性强,还是免费的.然而,PHP的默认设置对已经上线的网站不是那么适合.下面通过修改默认的配置文件加强PHP的安全策 ...