题意

给定一个字符串 \(s\) ,一个字符串 \(t\) ,其中 \(s\) 包含小写字母和 "?" ,\(t\) 只包含小写字母,现在把 \(s\) 中的问号替换成任意的小写字母,求 \(t\) 最多在 \(s\) 中出现多少次,\(t\) 可以互相覆盖。

\(1 \leq |s| \leq 10^5\)

\(1 \leq |t| \leq 10^5\)

\(1 \leq |s|\cdot|t| \leq 10^7\)

思路

由于 \(|s|\cdot|t| \leq 10^7\) ,那么用 \(dp[i][j]\) 表示 \(s\) 匹配到第 \(i\) 位,\(t\) 匹配到第 \(j\) 位时的最多出现次数,如果出现"?",就枚举是哪个字符。需要预处理出在哪一位遇到什么字符,接下来要到哪里匹配的信息。

我们设 \(F[i][j]\) 为匹配到模式串 \(P\) 的第 \(i\) 位,遇到 \(j\) 字符,下一位应该匹配 \(P\) 的哪一位。这个数组可以和 \(f\) 数组一起交替处理,使两者复杂度都得到保证。这个数组的思想也很重要,在后面的 \(\text{AC}\) 自动机中也有体现。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=1e5+5;
const int NN=2e7+5;
char T[N],P[N];
int f[N],F[N][30]; //F[i][j]表示匹配到第i位为'a'+j,下一位应匹配哪一位
int dp[NN];
int n,m;
#define dp(i,j) dp[(i)*(m+5)+j] int main()
{
scanf("%s%s",T+1,P+1);
n=strlen(T+1),m=strlen(P+1); f[1]=f[2]=1;FOR(i,0,25)F[1][i]=1+(P[1]-'a'==i);
FOR(i,2,m)
{
f[i+1]=F[f[i]][P[i]-'a'];
FOR(j,0,25)
{
if(P[i]-'a'==j)F[i][j]=i+1;
else F[i][j]=F[f[i]][j];
}
} FOR(i,1,n+1)FOR(j,1,m+1)dp(i,j)=-1;
dp(1,1)=0;
FOR(i,1,n)FOR(j,1,m)if(~dp(i,j))
{
if(T[i]!='?')
{
int J=F[j][T[i]-'a'];
if(J==m+1)dp(i+1,f[J])=max(dp(i+1,f[J]),dp(i,j)+1);
else dp(i+1,J)=max(dp(i+1,J),dp(i,j));
}
else
{
FOR(k,0,25)
{
int J=F[j][k];
if(J==m+1)dp(i+1,f[J])=max(dp(i+1,f[J]),dp(i,j)+1);
else dp(i+1,J)=max(dp(i+1,J),dp(i,j));
}
}
}
int ans=0;
FOR(i,1,m)ans=max(ans,dp(n+1,i));
printf("%d\n",ans);
return 0;
}

Codeforces 808G Anthem of Berland(KMP+基础DP)的更多相关文章

  1. Codeforces 808G Anthem of Berland - KMP - 动态规划

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一个字符串$s$,和一个字符串$t$,$t$只包含小写字母,$s$包含小写字母和通配符'?'.询问$t$可能在$s$中出现最多多少次. 原 ...

  2. codeforces 808G Anthem of Berland

    codeforces 808G Anthem of Berland 题面 给定\(s\)串和\(t\)串,字符集是小写字母.\(s\)串中有些位置的值不确定,要求你确定这些位置上的值,使得\(t\)在 ...

  3. Codeforces 808G Anthem of Berland【KMP】【DP】

    LINK 简要题意 给你一个串s,上面有字母和一些通配符,问你将通配符换成字母之后最多可以出现多少次串t 首先有一个很傻子的做法就是\(dp_{i,j}\)表示s到第i个位置匹配t串前j个字符的完整t ...

  4. Codeforces 219D. Choosing Capital for Treeland (树dp)

    题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...

  5. 基础dp

    队友的建议,让我去学一学kuangbin的基础dp,在这里小小的整理总结一下吧. 首先我感觉自己还远远不够称为一个dp选手,一是这些题目还远不够,二是定义状态的经验不足.不过这些题目让我在一定程度上加 ...

  6. HDU 2087 剪花布条(KMP基础应用)

    KMP基础,注意输入 #include<cstdio> #include<cstring> #include<iostream> using namespace s ...

  7. 基础DP(初级版)

    本文主要内容为基础DP,内容来源为<算法导论>,总结不易,转载请注明出处. 后续会更新出kuanbin关于基础DP的题目...... 动态规划: 动态规划用于子问题重叠的情况,即不同的子问 ...

  8. hdu 5586 Sum 基础dp

    Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem Desc ...

  9. hdu 4055 Number String (基础dp)

    Number String Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

随机推荐

  1. Python - 2. Built-in Collection Data Types

    From: http://interactivepython.org/courselib/static/pythonds/Introduction/GettingStartedwithData.htm ...

  2. uva 10600 ACM Contest And Blackout

    题意: 求最小生成树和次小生成树的总权值. 思路: 第一种做法,适用于规模较小的时候,prim算法进行的时候维护在树中两点之间路径中边的最大值,复杂度O(n^2),枚举边O(m),总复杂度O(n^2) ...

  3. 新做了块avr开发板--tft屏研究用

    2010-05-04 14:03:00 测试效果不错,使用也方便.

  4. Different between MB SD Connect Compact 5 and MB SD C4 Star Diagnostic Tool

    MB SD C4 Star Diagnostic Tool is the professional MB Star Diagnostic Tools for benz cars and trucks. ...

  5. Spring Boot 实现RESTful webservice服务端示例

    1.Spring Boot configurations application.yml spring: profiles: active: dev mvc: favicon: enabled: fa ...

  6. Kattis之旅——Chinese Remainder

    Input The first line of input consists of an integers T where 1≤T≤1000, the number of test cases. Th ...

  7. 使用URLConnection进行访问

    package test; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOExcepti ...

  8. springMVC之一(页面<--->控制器 互相传值,转发和重定向)

    #页面--->控制器1.request:不建议使用2.使用属性传值(建议使用)@RequestParam("name") String username3.使用Bean对象传 ...

  9. innobackup stream 压缩备份,解压后的qp文件

    是用innobackup stream 压缩备份,解压后很多文件还是qp格式的压缩文件,需要再解压. 备份: [root@ ~]# /usr/bin/innobackupex --defaults-f ...

  10. PHP获取Linux当前目录下文件并实现下载功能

    使用nginx转发过去给php server{ listen 9099; server_name 18.5.6.2; location / { proxy_http_version 1.1; root ...