luogu3338 [ZJOI2014]力
我发现我的构造方法好像不太一样而且比较显然?……先读入 \(q\) 数组(下表从零开始)。
记 \(i < j\) 时,\(a_{i-j}=-1/i^2\);\(i > j\) 时,\(a_{i-j}=1/i^2\);\(i = j\) 时,\(a_{i-j}=0\)。
答案 \(E_i=\sum_{j=0}^{n-1}a_{i-j}q_j\),可以用 FFT 优化,于是就做完了……吗?
发现 \(a\) 的下标可能会为负,那我们就整体平移一下,使得 \(E_i=\sum_{j=0}^{n-1}a_{i-j+n-1}q_j\),那么答案就是 \(E\) 数组的 \(0+n-1 \ldots n-1+n-1\) 项了。(原先是 \(0 \ldots n-1\) 项)
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int n, lim=1, limcnt, rev[524305];
double q[100005];
const double PI=acos(-1.0);
struct Complex{
double x, y;
Complex(double u=0.0, double v=0.0){
x = u; y = v;
}
Complex operator+(const Complex &u)const{
return Complex(x+u.x, y+u.y);
}
Complex operator-(const Complex &u)const{
return Complex(x-u.x, y-u.y);
}
Complex operator*(const Complex &u)const{
return Complex(x*u.x-y*u.y, x*u.y+y*u.x);
}
}a[524305], b[524305];
void fft(Complex a[], int opt){
for(int i=0; i<lim; i++)
if(i<rev[i])
swap(a[i], a[rev[i]]);
for(int i=2; i<=lim; i<<=1){
int tmp=i>>1;
Complex wn=Complex(cos(2*PI/i), opt*sin(2*PI/i));
for(int j=0; j<lim; j+=i){
Complex w=Complex(1.0, 0.0);
for(int k=0; k<tmp; k++){
Complex tmp1=a[j+k], tmp2=w*a[j+k+tmp];
a[j+k] = tmp1 + tmp2;
a[j+k+tmp] = tmp1 - tmp2;
w = w * wn;
}
}
}
if(opt==-1)
for(int i=0; i<lim; i++)
a[i].x /= lim;
}
int main(){
cin>>n;
for(int i=0; i<n; i++)
scanf("%lf", &b[i].x);
for(int i=-n+1; i<=n-1; i++){
if(i<0)
a[i+n-1].x = -1.0 / i / i;
else if(i==0)
a[i+n-1].x = 0;
else
a[i+n-1].x = 1.0 / i / i;
}
while(lim<=3*(n-1)) lim <<= 1, limcnt++;
for(int i=0; i<lim; i++)
rev[i] = (rev[i>>1]>>1) | ((i&1)<<(limcnt-1));
fft(a, 1);
fft(b, 1);
for(int i=0; i<lim; i++)
a[i] = a[i] * b[i];
fft(a, -1);
for(int i=0; i<n; i++)
printf("%.12f\n", a[i+n-1].x);
return 0;
}
luogu3338 [ZJOI2014]力的更多相关文章
- [ZJOI3527][Zjoi2014]力
[ZJOI3527][Zjoi2014]力 试题描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi.试求Ei. 输入 包含一个整数n,接下来n行每行输入一个数,第i行表示qi. 输出 有n ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 2003 Solved: 11 ...
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- 笔记-[ZJOI2014]力
[ZJOI2014]力 \[\begin{split} E_j=&\sum_{i=1}^{j-1}\frac{q_i}{(i-j)^2}-\sum_{i=j+1}^{n}\frac{q_i}{ ...
- 【Bzoj3527】【Luogu3338】[Zjoi2014]力(FFT)
题面 Bzoj Luogu 题解 先来颓柿子 $$ F_i=\sum_{j<i}\frac{q_iq_j}{(i-j)^2}-\sum_{j>i}\frac{q_iq_j}{(i-j)^2 ...
随机推荐
- UPDATE SQL 不同环境执行结果不一样
背景:1.前台:JQUERY 提交数据 2.后台:OWIN C# 处理接收数据 3.数据库: postgresql ========================================= ...
- @Enable*注解的工作原理
@EnableAspectJAutoProxy @EnableAsync @EnableScheduling @EnableWebMv @EnableConfigurationProperties @ ...
- C#cmd执行命令隐藏窗口,并保持程序一直运行
把要执行的cmd命令放入一个bat文件里,然后执行: //Process p = Process.Start(bPath); Process pro = new Process();pro.Start ...
- JS案例练习-手机微信聊天对话框
先附图 CSS部分: <style> body{} *{;} li{list-style: none;} .container{ width:310px; height:600px; ma ...
- cms-数据库设计
业务相关的3张表 1.类型表: CREATE TABLE `t_arctype` (`id` int(11) NOT NULL AUTO_INCREMENT,//id`typeName` varcha ...
- idea单元测试junit
参考文章地址地址:http://blog.csdn.net/u011138533/article/details/52165577 本文按以下顺序讲解JUnit4的使用 下载jar包 单元测试初体验 ...
- JS.match方法 正则表达式
match() 方法可在字符串内检索指定的值,或找到一个或多个正则表达式的匹配. 该方法类似 indexOf() 和 lastIndexOf(),但是它返回指定的值,而不是字符串的位置. <sc ...
- fopen, fdopen, freopen - 打开流
SYNOPSIS (总览) #include <stdio.h> FILE *fopen(const char *path, const char *mode); FILE *fdopen ...
- Java操作Redis工具类
依赖 jar 包 <dependency> <groupId>redis.clients</groupId> <artifactId>jedis< ...
- Windows环境下在Oracle VM VirtualBOX下克隆虚拟机镜像(克隆和导入)
Windows环境下在Oracle VM VirtualBOX下克隆虚拟机镜像: 注:直接复制一个.vdi 虚拟硬盘再挂上去就可以,但Virtualbox居然提示UUID重复,无法使用. 则,可以通过 ...