原文地址:

https://blog.devart.com/increasing-sqlite-performance.html

One the major issues a developer encounters when using the SQLite DBMS in his applications is its performance issue.

Perhaps, a classic case everyone gets into when using SQLite for the first time is very slow execution of multiple INSERT/UPDATE/DELETE operations. Indeed, sequential executions of not even thousands, but hundreds of INSERTs into a table may take too long.The origin of the issue lies in the specificity of using transactions in SQLite. SQLite starts a transaction automatically every time before any DML statement execution and commits it after execution. Accordingly, when executing multiple consequent statements, a new transaction will be started and committed for each statement.

The solution of this problem is quite simple — the block of DML statements may be enclosed into BEGIN … END operators block ( https://www.sqlite.org/lang_transaction.html). In this case, each DML statement won’t be executed in a separate transaction, but a single transaction will be started before the whole block execution and committed after all modifications.

Such an approach increases SQLite data modification performance by times. See more details about it in the SQLite documentation (https://www.sqlite.org/faq.html#q19).

However, this approach is not the only way to increase performance in SQLite. Parameters of the DBMS may also be configured using so-called PRAGMA (https://www.sqlite.org/pragma.html). The fact is that SQLite parameters are oriented not to high performance by default, but to maximum data safety and integrity. Modification of these parameters may increase performance, however, note, that the data corruption risks increase too.

Let’s analyze the impact to inserts performance by different PRAGMAs using LiteDAC.

We will use a test table SPEED_TEST in our project:

CREATE TABLE SPEED_TEST (
ID INTEGER,
F_INTEGER INTEGER,
F_FLOAT FLOAT,
F_STRING VARCHAR(250),
F_DATE DATETIME,
CONSTRAINT PK_BATCH_TEST PRIMARY KEY (ID)
)
1
2
3
4
5
6
7
8
CREATE TABLE SPEED_TEST (
  ID INTEGER,
  F_INTEGER INTEGER,
  F_FLOAT FLOAT,
  F_STRING VARCHAR(250),
  F_DATE DATETIME,
  CONSTRAINT PK_BATCH_TEST PRIMARY KEY (ID)
)

In each test, we will delete the database and re-create it, and then insert 10,000 records to the SPEED_TEST table as follows:

var
LiteQuery: TLiteQuery;
i: Integer;
ParamID, ParamF_INTEGER, ParamF_FLOAT, ParamF_STRING, ParamF_DATE: TDAParam;
begin
...
LiteQuery.SQL.Text := 'INSERT INTO SPEED_TEST VALUES (:ID, :F_INTEGER, :F_FLOAT, :F_STRING, :F_DATE)'; ParamID := LiteQuery.Params.ParamByName('ID');
ParamID.DataType := ftInteger;
ParamF_INTEGER := LiteQuery.Params.ParamByName('F_INTEGER');
ParamF_INTEGER.DataType := ftInteger;
ParamF_FLOAT := LiteQuery.Params.ParamByName('F_FLOAT');
ParamF_FLOAT.DataType := ftFloat;
ParamF_STRING := LiteQuery.Params.ParamByName('F_STRING');
ParamF_STRING.DataType := ftWideString;
ParamF_DATE := LiteQuery.Params.ParamByName('F_DATE');
ParamF_DATE.DataType := ftDateTime;

for i := 0 to 10000 - 1 do begin
ParamID.AsInteger := i + 1;
ParamF_INTEGER.AsInteger := i + 5000 + 1;
ParamF_FLOAT.AsFloat := (i + 1) / 15;
ParamF_STRING.AsString := 'Values ' + IntToStr(i + 1);
ParamF_DATE.AsDateTime := Now;
LiteQuery.Execute;
end;
...
end;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
var
  LiteQuery:  TLiteQuery;
  i: Integer;
  ParamID, ParamF_INTEGER, ParamF_FLOAT, ParamF_STRING, ParamF_DATE: TDAParam;
begin
   ...
  LiteQuery.SQL.Text := 'INSERT INTO SPEED_TEST VALUES (:ID, :F_INTEGER, :F_FLOAT, :F_STRING, :F_DATE)';  ParamID := LiteQuery.Params.ParamByName('ID');
  ParamID.DataType := ftInteger;
  ParamF_INTEGER := LiteQuery.Params.ParamByName('F_INTEGER');
  ParamF_INTEGER.DataType := ftInteger;
  ParamF_FLOAT := LiteQuery.Params.ParamByName('F_FLOAT');
  ParamF_FLOAT.DataType := ftFloat;
  ParamF_STRING := LiteQuery.Params.ParamByName('F_STRING');
  ParamF_STRING.DataType := ftWideString;
  ParamF_DATE := LiteQuery.Params.ParamByName('F_DATE');
  ParamF_DATE.DataType := ftDateTime;
 
  for i := 0 to 10000 - 1 do begin
    ParamID.AsInteger := i + 1;
    ParamF_INTEGER.AsInteger := i + 5000 + 1;
    ParamF_FLOAT.AsFloat := (i + 1) / 15;
    ParamF_STRING.AsString := 'Values ' + IntToStr(i + 1);
    ParamF_DATE.AsDateTime := Now;
    LiteQuery.Execute;
  end;
  ...
end;

We’ll run the test project on 2 platforms: Microsoft Windows 7 x86 and MacOS X 10.9 Mavericks.

PRAGMA TEMP_STORE

This parameter allows to specify location of temporary objects in the database: tables, indexes, triggers, views, etc. PRAGMA TEMP_STORE accepts 3 values:

  • 0 | DEFAULT — the default value, when location of temporary objects storage is defined by the option, which is set during SQLite compilation;
  • 1 | FILE — temporary objects are stored in a file (its location depends on the used OS);
  • 2 | MEMORY — temporary objects are stored in memory.

When the TEMP_STORE parameter is changed, all the temporary tables, indexes, triggers, views are deleted.

Time: sec

Microsoft Windows 7 x86
DEFAULT FILE MEMORY
235 225 215
MacOS X 10.9 Mavericks
DEFAULT FILE MEMORY
34 33 32

According to the retrieved results, making RAM a storage for temporary DB objects increases performance a little.

PRAGMA JOURNAL_MODE

The parameter sets the database log working mode (rollback journal file used on transaction processing).

PRAGMA JOURNAL_MODE accepts the following values:

  • DELETE (the default value) — in this mode the log file is deleted after transaction is committed.
  • TRUNCATE — after transaction is committed, the log file is truncated to 0 size. This works faster than log deleting on a number of platforms, since the catalog containing the log file is not modified at this.
  • PERSIST — instead of deleting and truncating, the log file header is filled in with zeros. In this case, the log file size doesn’t change and it can require quite much space. However, such an operation may be executed faster than DELETE or TRUNCATE.
  • MEMORY — the rollback journal is kept in RAM and doesn’t use the disk subsystem. Such mode provides more significant performance increase when working with log. However, in case of any failures within a transaction, data in the DB will be corrupted with high probability due to a lack of saved data copy on the disk.
  • OFF — not using log. In this mode, transaction rollback is impossible. In case of a crash, the database will be likely corrupted.

Time: sec

Microsoft Windows 7 x86
DELETE TRUNCATE PERSIST MEMORY OFF
235 210 220 65 63
MacOS X 10.9 Mavericks
DELETE TRUNCATE PERSIST MEMORY OFF
34 4 3 2 1

Changing this parameter significantly increases performance when inserting data on both platforms. Note, that at using MEMORY or OFF values, the risk of data loss is maximal too.

PRAGMA SYNCHRONOUS

Defines the mode of rollback journal synchronization with the data.

  • 2 | FULL — the default value. SQLite pauses working in critical cases, in order to guarantee 100% data integrity when saving to the database file — even on system crash or power failure. This synchronization mode is absolutely safe, but the most slow.
  • 1 | NORMAL — SQLite will pause in critical cases as well, but less often in the FULL mode. At this value, there is a (quite small) data corruption possibility. The NORMAL mode is a compromise between reliability and performance.
  • 0 | OFF — database synchronization is not used. I.e., SQLite takes no breaks when transmitting data to the operating system. Such mode can substantially increase performance. The database will meet the integrity conditions after the SQLite crash, however, data will be corrupted in case of system crash or power off.

Time: sec

Microsoft Windows 7 x86
FULL NORMAL OFF
235 175 43
MacOS X 10.9 Mavericks
FULL NORMAL OFF
34 32 32

The test demonstrated significant performance increase on Windows. It is highly recommended to speed up performance this way only with assurance of the operating system stability and power quality.

PRAGMA LOCKING_MODE

Defines the locking mode.

  • NORMAL — the default value. The database file is locked at the moment of record reading or writing. After the operation completes, the lock is released.
  • EXCLUSIVE — the database file is used in exclusive mode. The number of system calls to implement file operations decreases in this case, which may increase database performance.

Time: sec

Microsoft Windows 7 x86
NORMAL EXCLUSIVE
235 155
MacOS X 10.9 Mavericks
NORMAL EXCLUSIVE
34 3

The most secure approach to increase performance. Though, EXCLUSIVE MODE allows the database to serve only one connection.

PRAGMA CACHE_SIZE

Defines the number of pages from the database file for storing in RAM, i.e., the cache size. Increasing this parameter may increase performance of the database on high load, since the greater its value is, the more modifications a session can perform before retrieving exclusive lock.

Time: sec

Microsoft Windows 7 x86
0 500 1000 2000 4000 8000 10000
222 185 230 230 230 230 250
MacOS X 10.9 Mavericks
0 500 1000 2000 4000 8000 10000
34 34 34 34 34 34

Performance increase is observed only on Windows. Changing this parameter is almost secure, yet the performance growth is minor.

PRAGMA PAGE_SIZE

Defines the database page size.

The page size is set by default depending on some computer and OS specifications. They include disk sector size and the used encoding. SQLite supports page size range from 512 to 65536 bytes.

Time: sec

Windows 7 x86
512 1024 2048 4096 8192 16384 32768 65535
240 235 227 225 255 295 450 295
MacOS X 10.9 Mavericks
512 1024 2048 4096 8192 16384 32768 65535
34 34 33 33 34 40 50 65

Like the previous parameter, PRAGMA PAGE_SIZE is almost safe with respect to risk of data corruption, however, tuning of this parameter doesn’t lead to significant performance increase and requires search for values depending on the used sector size.

Summary

  1. There are ways to increase SQLite data insert performance in addition to using transactions.
  2. Usage of PRAGMA may significantly increase performance of SQLite.
  3. SQLite default settings don’t provide optimal performance, yet guarantee absolute data integrity and safety.
  4. Changing SQLite parameter values in favor of performance increases the risk of data corruption.
  5. Values of some parameters (PRAGMA PAGE_SIZE, PRAGMA CACHE_SIZE) should be found depending on specifications of the used environment.

提高sqlite 的运行性能(转载)的更多相关文章

  1. 通过分区(Partitioning)提高Spark的运行性能

    在Sortable公司,很多数据处理的工作都是使用Spark完成的.在使用Spark的过程中他们发现了一个能够提高Sparkjob性能的一个技巧,也就是修改数据的分区数,本文将举个例子并详细地介绍如何 ...

  2. 修改Tomcat Connector运行模式,优化Tomcat运行性能

    Tomcat是一个小型的轻量级应用服务器,也是JavaEE开发人员最常用的服务器之一.不过,许多开发人员不知道的是,Tomcat Connector(Tomcat连接器)有bio.nio.apr三种运 ...

  3. 修改 Tomcat Connector运行模式 优化Tomcat运行性能

    omcat是一个小型的轻量级应用服务器,也是JavaEE开发人员最常用的服务器之一.不过,许多开发人员不知道的是,Tomcat Connector(Tomcat连接器)有bio.nio.apr三种运行 ...

  4. 利用 squid 反向代理提高网站性能(转载)

    本文在介绍 squid 反向代理的工作原理的基础上,指出反向代理技术在提高网站访问速度,增强网站可用性.安全性方面有很好的用途.作者在具体的实验环境下,利用 DNS 轮询和 Squid 反向代理技术, ...

  5. 【转载】总结使用Unity3D优化游戏运行性能的经验

    流畅的游戏玩法来自流畅的帧率,而我们即将推出的动作平台游戏<Shadow Blade>已经将在标准iPhone和iPad设备上实现每秒60帧视为一个重要目标. 以下是我们在紧凑的优化过程中 ...

  6. JVM学习(1)——通过实例总结Java虚拟机的运行机制-转载http://www.cnblogs.com/kubixuesheng/p/5199200.html

    JVM系类的文章全部转载自:http://www.cnblogs.com/kubixuesheng/p/5199200.html 特别在此声明.那位博主写的真的很好 ,感谢!! 俗话说,自己写的代码, ...

  7. 提高 Linux 上 socket 性能

      http://www.cnblogs.com/luxf/archive/2010/06/13/1757662.html 基于Linux的Socket网络编程的性能优化   1 引言    随着In ...

  8. 通过硬件层提高Android动画的性能

    曾有许多人问我为什么在他们开发的应用中,动画的性能表现都很差.对于这类问题,我往往会问他们:你们有尝试过在硬件层解决动画的性能问题么? 我们都知道,在播放动画的过程中View在每一帧动画的显示时重绘自 ...

  9. 修改Linux内核参数提高Nginx服务器并发性能

    当linux下Nginx达到并发数很高,TCP TIME_WAIT套接字数量经常达到两.三万,这样服务器很容易被拖死.事实上,我们可以简单的通过修改Linux内核参数,可以减少Nginx服务器 的TI ...

随机推荐

  1. linux shmget shmctl

    shmgetint shmget(key_t key, size_t size, int flag);key: 标识符的规则size:共享存储段的字节数flag:读写的权限返回值:成功返回共享存储的i ...

  2. gerrit 安装

    http://blog.csdn.net/ljchlx/article/details/21988471

  3. yii加载自带验证码的方法

    Yii的源码包里面是自带有验证码的相关类的,因此在使用验证码的时候无需再加载外部验证码类来助阵了.下面本文将介绍一下如何在项目中加载Yii自带的验证码功能. 具体分三步: (1)在需要加载验证码的co ...

  4. 本地测试IIS,Post调用接口

    最近在学习三种调用接口方式,POST,Socket,Webserivce,今天刚写完POST方式所以就分享下,欢迎高手指点. public string strResult = "" ...

  5. win10下Vmware12虚拟机安装Ubuntu16.04

    一.下载VMware虚拟机: VMware12下载地址:点这里 VMware 12pro 专业版永久许可证密钥:  5A02H-AU243-TZJ49-GTC7K-3C61N 如果许可证不能用,参考这 ...

  6. 微信小程序踩坑之一[wx.request]请求模式

    最近在做小程序时,使用wx.request()方法请求时, 当使传输string类型时,一定要声明method请求模式为post,否则会一直报错,而不声明时默认为get, 已填坑 =,= wx.req ...

  7. 洛谷—— P1873 砍树

    https://www.luogu.org/problemnew/show/P1873 题目描述 伐木工人米尔科需要砍倒M米长的木材.这是一个对米尔科来说很容易的工作,因为他有一个漂亮的新伐木机,可以 ...

  8. TreeSet, LinkedHashSet and HashSet 的区别

    1. 介绍 TreeSet, LinkedHashSet and HashSet 在java中都是实现Set的数据结构 # TreeSet的主要功能用于排序 # LinkedHashSet的主要功能用 ...

  9. luogu P1103 书本整理

    题目描述 Frank是一个非常喜爱整洁的人.他有一大堆书和一个书架,想要把书放在书架上.书架可以放下所有的书,所以Frank首先将书按高度顺序排列在书架上.但是Frank发现,由于很多书的宽度不同,所 ...

  10. GDKOI賽前總結

    @(賽前總結)[GDKOI2017] 提一些比賽時要注意的事項: 賽前先把讀入優化/輸出優化的模板調試好, 加入缺省源中. 注意不要出錯, 輸出為0或者負數的情況要特盤; 讀入輸出文件名不要搞錯; 由 ...