POJ2407_Relatives【欧拉phi函数】【基本】
Memory Limit: 65536K
Accepted: 5571
Description
Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.
Input
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.
Output
For each test case there should be single line of output answering the question posed above.
Sample Input
7
12
0
Sample Output
6
4
Source
Waterloo local 2002.07.01
题目大意:给你一个正整数N。求在小于N的范围内。有多少个正整数与N互质?
思路:典型的欧拉phi函数
欧拉函数(摘自百度百科):
在数论,对正整数n,欧拉函数φ(n)是少于或等于n的数中与n互质的数的数目。
φ(n) = n(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),当中p1, p2……pn为x的所
有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。
(注意:每种质因数仅仅一个。比方12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4
一些定理:
1>若n是质数p的k次幂。φ(n) = p^k-p^(k-1) =(p-1)p^(k-1),由于除了p的倍数外,
其它数都跟n互质。
2>若n为素数,φ(n)
= n - 1;(同第6条)
3>当n为奇数时,φ(2n)=φ(n)。
4>欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
5>欧拉定理:对不论什么两个互质的正整数a, m, m>=2有 a^φ(m) ≡ 1(mod m)。
6>费马小定理:当m是质数p时,此式则为:a^(p-1)≡1(mod m)。
#include <stdio.h>
#include <math.h> int Euler(int n)
{
int i,ret = n;
for(i = 2; i <= sqrt(1.0*n); i++)
{
if(n % i == 0)
{
ret = ret - ret/i;
}
while(n % i == 0)
n /= i;
}
if(n > 1)
ret = ret - ret/n;
return ret;
}
int main()
{
int p;
while(~scanf("%d",&p) && p)
printf("%d\n",Euler(p));
return 0;
}
POJ2407_Relatives【欧拉phi函数】【基本】的更多相关文章
- HDU 1286 找新朋友 (欧拉phi函数打表)
题意:你懂得. 析:一看这个题应该是欧拉phi函数,也就说欧拉phi函数是指求从 1 到 n 中与 n 互素的数的个数,这个题很明显是这个意思嘛,不多说了. 代码如下: #include <io ...
- 积性函数初步(欧拉$\varphi$函数)
updata on 2020.4.3 添加了欧拉\(\varphi\)函数为积性函数的证明和它的计算方式 1.积性函数 设\(f(n)\)为定义在正整数上的函数,若\(f(1)=1\),且对于任意正整 ...
- 容斥原理、欧拉函数、phi
容斥原理: 直接摘用百度词条: 也可表示为 设S为有限集, ,则 两个集合的容斥关系公式:A∪B = A+B - A∩B (∩:重合的部分) 三个集合的容斥关系公式:A∪B∪C = A+B+C - A ...
- hdu 5279 Reflect phi 欧拉函数
Reflect Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest_chi ...
- (Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))
/* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...
- 求一个极大数的欧拉函数 phi(i)
思路: 因为当n>=1e10的时候,线性筛就不好使啦.所以要用一个公式 φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn) 证明详见:<公式 ...
- POJ3090 巧用欧拉函数 phi(x)
POJ3090 给定一个坐标系范围 求不同的整数方向个数 分析: 除了三个特殊方向(y轴方向 x轴方向 (1,1)方向)其他方向的最小向量表示(x,y)必然互质 所以对欧拉函数前N项求和 乘2(关于( ...
- (hdu step 7.2.1)The Euler function(欧拉函数模板题——求phi[a]到phi[b]的和)
题目: The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...
随机推荐
- linux下kodi没有声音的解决
前几天,心血来潮,就安装了manjaro的pre3版本,由于是mini kde版本的,就随手安装了kodi,可以用来看视频,听音乐和看图片. 结果在所有插件都折腾好了之后发现,在屏幕的右上角有一个喇叭 ...
- Current Sourcing (拉電流) and Current Sinking(灌電流)
Current Sourcing and Sinking Current sourcing and sinking is often mentioned in relation to electron ...
- java 修改字体大小
在Windows->Preferences->General->Appearance->Colors and Fonts->Java->Java Editor Te ...
- POJ3086 Treats for the Cows(区间DP)
题目链接 Treats for the Cows 直接区间DP就好了,用记忆化搜索是很方便的. #include <cstdio> #include <cstring> #i ...
- BZOJ2870—最长道路tree
最长道路tree Description H城很大,有N个路口(从1到N编号),路口之间有N-1边,使得任意两个路口都能互相到达,这些道路的长度我们视作一样.每个路口都有很多车辆来往,所以每个路口i都 ...
- Network| ICMP
Internet Control Message Protocol,ICMP是网路协议族的核心协议之一.它用于TCP/IP网络中发送控制消息,提供可能发生在通信环境中的各种问题反馈,通过这些信息,令管 ...
- 学习GRPC(一) 简单实现
Grpc 实现流程图 资料 https://grpc.io/docs/quickstart/go/ https://studygolang.com/articles/16627 使用方法 make r ...
- Blocks编程要点
[老狼推荐]Blocks编程要点原文:Blocks Programming Topics链接:http://developer.apple.com/library/ios/#documentation ...
- django中引入json
try: from django.utils import simplejson as jsonexcept: import simplejson as json
- 第十八章 Python批量管理主机(paramiko、fabric与pexpect)
这个人的文章不错:http://lizhenliang.blog.51cto.com/all/7876557 转载:http://lizhenliang.blog.51cto.com/7876557/ ...