题目描述

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!”
SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

输入

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

输出

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数

样例输入

3
1 2 50
1 3 50
50 0 0

样例输出

1.000000


题解

树形概率dp

先自下至上dp,求出每个子树中根节点不能工作的概率$f[x]$。其中工作需要子节点字数能工作且边存在。

然后自上至下dp,更新每个点能工作的概率$g[x]$,计算出父树的贡献,方法同理。

具体的dp方程:

$f[x]=(1-w[x])*\prod(1-f[to[i]]*val[i])$

$g[1]=f[1]$

$g[to[i]]=f[to[i]]*(1-(1-\frac{g[x]}{1-(1-f[to[i]])*val[i]})*val[i])$。

注意可能产生的除0的情况,此时$g[x]$必然等于0,特判一下就好了。

最后的答案即为$\sum\limits_{i=1}^ng[i]$。

#include <cstdio>
#define N 500010
const double eps = 1e-7;
int head[N] , to[N << 1] , next[N << 1] , cnt;
double val[N << 1] , w[N] , f[N] , g[N];
void add(int x , int y , double z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
void dfs1(int x , int fa)
{
int i;
f[x] = 1 - w[x];
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa)
dfs1(to[i] , x) , f[x] *= 1 - (1 - f[to[i]]) * val[i];
}
void dfs2(int x , int fa)
{
int i;
for(i = head[x] ; i ; i = next[i])
{
if(to[i] != fa)
{
if(1 - (1 - f[to[i]]) * val[i] < eps) g[to[i]] = f[to[i]] * val[i];
else g[to[i]] = f[to[i]] * (1 - (1 - g[x] / (1 - (1 - f[to[i]]) * val[i])) * val[i]);
dfs2(to[i] , x);
}
}
}
int main()
{
int n , i , x , y;
double z , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d%lf" , &x , &y , &z) , add(x , y , z / 100) , add(y , x , z / 100);
for(i = 1 ; i <= n ; i ++ ) scanf("%lf" , &w[i]) , w[i] /= 100;
dfs1(1 , 0) , g[1] = f[1] , dfs2(1 , 0);
for(i = 1 ; i <= n ; i ++ ) ans += 1 - g[i];
printf("%.6lf\n" , ans);
return 0;
}

【bzoj3566】[SHOI2014]概率充电器 树形概率dp的更多相关文章

  1. BZOJ3566: [SHOI2014]概率充电器 树形+概率dp

    3566: [SHOI2014]概率充电器 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1888  Solved: 857[Submit][Stat ...

  2. BZOJ 3566 概率充电器(树形概率DP)

    题面 题目传送门 分析 定义f(i)f(i)f(i)为iii点不被点亮的概率,p(i)p(i)p(i)为iii自己被点亮的概率,p(i,j)p(i,j)p(i,j)表示i−ji-ji−j 这条边联通的 ...

  3. BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP

    BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技 ...

  4. BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  5. BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...

  6. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  7. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  8. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  9. BZOJ3566 SHOI2014 概率充电器 【概率DP】

    BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...

随机推荐

  1. AE开发关于OnMapReplaced方法的使用原理

    The OnMapReplaced event is triggered whenever the IMapControl2::Map is replaced by another map, such ...

  2. cdoj 414 八数码 (双向bfs+康拓展开,A*)

    一道关乎人生完整的问题. DBFS的优越:避免了结点膨胀太多. 假设一个状态结点可以扩展m个子结点,为了简单起见,假设每个结点的扩展都是相互独立的. 分析:起始状态结点数为1,每加深一层,结点数An ...

  3. DROP LANGUAGE - 删除一个过程语言

    SYNOPSIS DROP [ PROCEDURAL ] LANGUAGE name [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP LANGUAGE 将删除曾注 ...

  4. Oracle Real Application Clusters (RAC)

    Oracle Real Application Clusters — 概述 包含 Oracle Real Application Clusters (RAC) 选件的 Oracle 数据库允许依托一组 ...

  5. iOS 打印系统字体

    NSArray * array = [UIFont familyNames]; for( NSString *familyName in array ){ printf( "Family: ...

  6. Chunky Monkey-freecodecamp算法题目

    Chunky Monkey(猴子吃香蕉, 分割数组) 要求 把一个数组arr按照指定的数组大小size分割成若干个数组块. 思路 利用size值和while语句确定切割数组的次数(定义temp将siz ...

  7. php代码压缩

    php代码压缩,除可以使用token_get_all进行压缩之外,还可以使用系统自带的函数   php_strip_whitespace (PHP 5) php_strip_whitespace — ...

  8. vue-highlightjs的使用小结

    万能的github真主,让我们强大!在vue的项目中想使用highlight.js这样的代码高亮?有人帮助我们实现了vue-highlightjs 安装 yarn add highlight.js - ...

  9. python中文件操作的六种模式及对文件某一行进行修改的方法

    一.python中文件操作的六种模式分为:r,w,a,r+,w+,a+ r叫做只读模式,只可以读取,不可以写入 w叫做写入模式,只可以写入,不可以读取 a叫做追加写入模式,只可以在末尾追加内容,不可以 ...

  10. python中文件操作的基本方法

    在python中对一个文件进行操作,分为三大步:打开,操作,关闭 首先创建一个文件hello,里面内容为hello world 一.打开一个文件 1.#open(‘文件名或文件路径’,‘操作模式’,文 ...