递推求值
时间限制:1000 ms | 内存限制:65535 KB
难度:4
描述
给你一个递推公式:

f(x)=a*f(x-2)+b*f(x-1)+c

并给你f(1),f(2)的值,请求出f(n)的值,由于f(n)的值可能过大,求出f(n)对1000007取模后的值。

注意:-1对3取模后等于2

输入
第一行是一个整数T,表示测试数据的组数(T<=10000)
随后每行有六个整数,分别表示f(1),f(2),a,b,c,n的值。
其中0<=f(1),f(2)<100,-100<=a,b,c<=100,1<=n<=100000000 (10^9)
输出
输出f(n)对1000007取模后的值
样例输入
2
1 1 1 1 0 5
1 1 -1 -10 -100 3
样例输出
5
999896

之前一直玩二维的,发现三维的矩阵也蛮容易构造的。新编辑器蛮好用。

代码:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
typedef long long LL;
#define INF 0x3f3f3f3f
const LL mod=1000007;
struct mat
{
LL pos[3][3];
mat(){memset(pos,0,sizeof(pos));}
};
inline mat operator*(const mat &a,const mat &b)
{
int i,j,k;
mat c;
for (i=0; i<3; i++)
{
for (j=0; j<3; j++)
{
for (k=0; k<3; k++)
{
c.pos[i][j]+=(((a.pos[i][k])%mod)*(b.pos[k][j])%mod+mod)%mod;
}
}
}
return c;
}
inline mat matpow(mat a,LL b)
{
mat r,bas;
r.pos[0][0]=r.pos[1][1]=r.pos[2][2]=1;
bas=a;
while (b!=0)
{
if(b&1)
r=r*bas;
bas=bas*bas;
b>>=1;
}
return r;
}
int main(void)
{
ios::sync_with_stdio(false);
LL a,b,c,n,f1,f2;
int tcase;
while (cin>>tcase)
{
while (tcase--)
{
cin>>f1>>f2>>a>>b>>c>>n;
if(n==1)
cout<<f1<<endl;
else if(n==2)
cout<<f2<<endl;
else
{
mat t,one;
t.pos[0][0]=b,t.pos[0][1]=a,t.pos[0][2]=c;
t.pos[1][0]=t.pos[2][2]=1;
one.pos[0][0]=f2,one.pos[1][0]=f1,one.pos[2][0]=1;
t=matpow(t,n-2);
one=t*one;
cout<<one.pos[0][0]%mod<<endl;
}
}
}
return 0;
}

NYOJ——301递推求值(矩阵快速幂)的更多相关文章

  1. NYOJ 301 递推求值

    第一次写博客,拿个矩阵快速幂练练手吧. 首先什么是快速幂,快速幂是让复杂度由线性降为log n的算法,比如8^1024次方暴力要算1024次,但是矩阵快速幂只算10次就好. 此题只不过是把快速幂的底数 ...

  2. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  3. hdu3483 A Very Simple Problem 非线性递推方程2 矩阵快速幂

    题目传送门 题目描述:给出n,x,mod.求s[n]. s[n]=s[n-1]+(x^n)*(n^x)%mod; 思路:这道题是hdu5950的进阶版.大家可以看这篇博客hdu5950题解. 由于n很 ...

  4. Luogu3824 [NOI2017]泳池 【多项式取模】【递推】【矩阵快速幂】

    题目分析: 用数论分块的思想,就会发现其实就是连续一段的长度$i$的高度不能超过$\lfloor \frac{k}{i} \rfloor$,然后我们会发现最长的非$0$一段不会超过$k$,所以我们可以 ...

  5. HDU4565 So Easy! —— 共轭构造、二阶递推数列、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4565 So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory L ...

  6. NYOJ-301递推求值

    递推求值 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 给你一个递推公式: f(x)=a*f(x-2)+b*f(x-1)+c 并给你f(1),f(2)的值,请求出f ...

  7. 算法笔记_091:蓝桥杯练习 递推求值(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 已知递推公式: F(n, 1)=F(n-1, 2) + 2F(n-3, 1) + 5, F(n, 2)=F(n-1, 1) + 3F(n- ...

  8. Java实现 蓝桥杯 算法提高 递推求值

    算法提高 递推求值 时间限制:1.0s 内存限制:256.0MB 问题描述 已知递推公式: F(n, 1)=F(n-1, 2) + 2F(n-3, 1) + 5, F(n, 2)=F(n-1, 1) ...

  9. 【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂

    题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 ...

随机推荐

  1. 【转】iOS开发里的Bundle是个啥玩意?!

    初学iOS开发的同学,不管是自己写的,还是粘贴的代码,或多或少都写过下面的代码 [[NSBundle mainBundle] pathForResource:@"someFileName&q ...

  2. destoon登录后跳转到指定网址

    打开module\member\register.inc.php文件搜索:<input type="hidden" name="forward" valu ...

  3. python判断平衡二叉树

    题目:输入一棵二叉树,判断该二叉树是否是平衡二叉树.若左右子树深度差不超过1则为一颗平衡二叉树. 思路: 使用获取二叉树深度的方法来获取左右子树的深度 左右深度相减,若大于1返回False 通过递归对 ...

  4. fastjson中转字符串时格式化、显示null值等

    fastjson中object转string时的配置项,包括 1. 是否显示value为null的项 2. 是否格式化显示字符串 3. 日期是否格式化显示为可读字符串 ... 这些的配置均在Seria ...

  5. python中yield的用法详解

    首先我要吐槽一下,看程序的过程中遇见了yield这个关键字,然后百度的时候,发现没有一个能简单的让我懂的,讲起来真TM的都是头头是道,什么参数,什么传递的,还口口声声说自己的教程是最简单的,最浅显易懂 ...

  6. Codevs1080 线段树练习

    题目描述 Description 一行N个方格,开始每个格子里都有一个整数.现在动态地提出一些问题和修改:提问的形式是求某一个特定的子区间[a,b]中所有元素的和:修改的规则是指定某一个格子x,加上或 ...

  7. Linux 常用命令(三)

    一.less --分页查看文件:方面查阅(编辑)大文件 说明:支持方向键盘和鼠标向上向下浏览 -N 显示行号 二.head --output the first  part of files 默认显示 ...

  8. __vet_atags

    参考:atags--__vet_atags标签    arch/arm/include/asm/setup.h /* * linux/include/asm/setup.h * * Copyright ...

  9. ACM Changchun 2015 L . House Building

    Have you ever played the video game Minecraft? This game has been one of the world's most popular ga ...

  10. MMM的一周计划 准备公告

    (19.6.17——19.6.22) 目前本周还没有过去所以还会更新 第0周 目前博客更新暂定于 [题目难度颜色见洛谷] 1.绿题以上绝对更新 2.黄题可能更新 3.其他估计不会有更新 准备工作 1. ...