Codeforces 1108E2 Array and Segments (Hard version) 差分, 暴力
Codeforces 1108E2
E2. Array and Segments (Hard version)
Description:
The only difference between easy and hard versions is a number of elements in the array.
You are given an array \(a\) consisting of \(n\) integers. The value of the \(i\)-th element of the array is \(a_i\).
You are also given a set of \(m\) segments. The \(j\)-th segment is \([l_j; r_j]\), where \(1 \le l_j \le r_j \le n\).
You can choose some subset of the given set of segments and decrease values on each of the chosen segments by one (independently). For example, if the initial array \(a = [0, 0, 0, 0, 0]\) and the given segments are \([1; 3]\) and \([2; 4]\) then you can choose both of them and the array will become \(b = [-1, -2, -2, -1, 0]\).
You have to choose some subset of the given segments (each segment can be chosen at most once) in such a way that if you apply this subset of segments to the array \(a\) and obtain the array \(b\) then the value \(\max\limits_{i=1}^{n}b_i - \min\limits_{i=1}^{n}b_i\) will be maximum possible.
Note that you can choose the empty set.
If there are multiple answers, you can print any.
If you are Python programmer, consider using PyPy instead of Python when you submit your code.
Input:
The first line of the input contains two integers \(n\) and \(m\) (\(1 \le n \le 10^5, 0 \le m \le 300\)) — the length of the array \(a\) and the number of segments, respectively.
The second line of the input contains \(n\) integers \(a_1, a_2, \dots, a_n\) (\(-10^6 \le a_i \le 10^6\)), where \(a_i\) is the value of the \(i\)-th element of the array \(a\).
The next \(m\) lines are contain two integers each. The \(j\)-th of them contains two integers \(l_j\) and \(r_j\) (\(1 \le l_j \le r_j \le n\)), where \(l_j\) and \(r_j\) are the ends of the \(j\)-th segment.
Output
In the first line of the output print one integer \(d\) — the maximum possible value \(\max\limits_{i=1}^{n}b_i - \min\limits_{i=1}^{n}b_i\) if \(b\) is the array obtained by applying some subset of the given segments to the array \(a\).
In the second line of the output print one integer \(q\) (\(0 \le q \le m\)) — the number of segments you apply.
In the third line print \(q\) distinct integers \(c_1, c_2, \dots, c_q\) in any order (\(1 \le c_k \le m\)) — indices of segments you apply to the array \(a\) in such a way that the value \(\max\limits_{i=1}^{n}b_i - \min\limits_{i=1}^{n}b_i\) of the obtained array \(b\) is maximum possible.
If there are multiple answers, you can print any.
Sample Input:
5 4
2 -2 3 1 2
1 3
4 5
2 5
1 3
Sample Output:
6
2
4 1
Sample Input:
5 4
2 -2 3 1 4
3 5
3 4
2 4
2 5
Sample Output:
7
2
3 2
Sample Input:
1 0
1000000
Sample Output:
0
0
题目链接
题解:
有一个长为\(n\)的数列,有\(m\)个线段,每个线段将该线段区间的所有数减一,你可以选任意个线段,要求最大化极差并输出一种方案
这种极差的题一个套路是固定最大值求最小值
那么我们可以枚举每一个数作为最大值的方案,对不包含这个数的线段进行操作,然后找最大最小值即可,利用差分的思想单次操作可以\(O(1)\),最后查询极值\(O(n)\),这样我们就找到了一个\(O(n^2)\)的优秀算法,可以通过这题的简单版本
然后我们注意到线段数很少,只有\(300\)个,那么我们可以将原数列分为至多\(600\)段,每一段的数作为最大值时策略是相同的,我们就的到了\(O(n \cdot m +m^2)\)的算法,cf机子上跑得飞快
另外,可以用线段树加速操作得到\(O(mlog(n))\)的做法
甚至可以将\(n\)也变成\(m\),因为我们只关心每一段的极值,可以把原数列切成至多\(600\)段,每一段记录最大最小值即可,复杂度为\(O(m^2)\), 不知道为什么评论指出这个算法的老哥的代码跑的还没我\(O(n \cdot m + m^2)\)快...
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10, M = 310;
int n, a[N], b[N], ans, l[M], r[M], m, rec, cnt;
set<int> key;
int main() {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
for(int i = 1; i <= m; ++i) {
scanf("%d%d", &l[i], &r[i]);
key.insert(l[i]);
key.insert(r[i] + 1);
}
ans = *max_element(a + 1, a + n + 1) - *min_element(a + 1, a + n + 1);
for(auto it = key.begin(); it != key.end(); ++it) {
int i = *it; ++cnt;
memset(b, 0, sizeof(b));
int mx = -1e9, mn = 1e9, sum = 0;
for(int j = 1; j <= m; ++j) {
if(l[j] <= i && i <= r[j]) continue;
b[l[j]]--, b[r[j] + 1]++;
}
for(int j = 1; j <= n; ++j) {
sum += b[j];
mx = max(mx, a[j] + sum);
mn = min(mn, a[j] + sum);
}
if(mx - mn > ans) {
rec = i;
ans = mx - mn;
}
}
printf("%d\n", ans);
if(rec) {
vector<int> res;
for(int i = 1; i <= m; ++i) {
if(l[i] <= rec && rec <= r[i]) continue;
res.push_back(i);
}
printf("%d\n", (int)res.size());
for(int i = 0; i < res.size(); ++i)
printf("%d%c", res[i], " \n"[i == res.size() - 1]);
}
else
puts("0\n");
return 0;
}
Codeforces 1108E2 Array and Segments (Hard version) 差分, 暴力的更多相关文章
- Codeforces 1108E2 Array and Segments (Hard version)(差分+思维)
题目链接:Array and Segments (Hard version) 题意:给定一个长度为n的序列,m个区间,从m个区间内选择一些区间内的数都减一,使得整个序列的最大值减最小值最大. 题解:利 ...
- codeforces#1108E2. Array and Segments (线段树+扫描线)
题目链接: http://codeforces.com/contest/1108/problem/E2 题意: 给出$n$个数和$m$个操作 每个操作是下标为$l$到$r$的数减一 选出某些操作,使$ ...
- E1. Array and Segments (Easy version)(暴力) && E2. Array and Segments (Hard version)(线段树维护)
题目链接: E1:http://codeforces.com/contest/1108/problem/E1 E2:http://codeforces.com/contest/1108/problem ...
- Codeforces Round #535 (Div. 3) E2. Array and Segments (Hard version) 【区间更新 线段树】
传送门:http://codeforces.com/contest/1108/problem/E2 E2. Array and Segments (Hard version) time limit p ...
- CF1108E2 Array and Segments (Hard version)
线段树 对于$Easy$ $version$可以枚举极大值和极小值的位置,然后判断即可 但对于$Hard$ $version$明显暴力同时枚举极大值和极小值会超时 那么,考虑只枚举极小值 对于数轴上每 ...
- Array and Segments (Easy version) CodeForces - 1108E1 (暴力枚举)
The only difference between easy and hard versions is a number of elements in the array. You are giv ...
- 【Codeforces 1108E1】Array and Segments (Easy version)
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 枚举最大值和最小值在什么地方. 显然,只要包含最小值的区间,都让他减少. 因为就算那个区间包含最大值,也无所谓,因为不会让答案变小. 但是那些 ...
- CF E2 - Array and Segments (Hard version) (线段树)
题意给定一个长度为n的序列,和m个区间.对一个区间的操作是:对整个区间的数-1可以选择任意个区间(可以为0个.每个区间最多被选择一次)进行操作后,要求最大化的序列极差(极差即最大值 - 最小值).ea ...
- Codeforces 1108E (Array and Segments) 线段树
题意:给你一个长度为n的序列和m组区间操作,每组区间操作可以把区间[l, r]中的数字都-1,请选择一些操作(可以都不选),使得序列的最大值和最小值的差值尽量的大. 思路:容易发现如果最大值和最小值都 ...
随机推荐
- AtomicInteger在实际项目中的应用
AtomicInteger.一个提供原子操作的Integer的类. 在Java语言中,++i和i++操作并非线程安全的.在使用的时候,不可避免的会用到synchronized关键字. 而AtomicI ...
- LVDS、MIPI、EDP、VGA、DVI、HDMI、DP3.0(雷电接口)
1.LVDS 2.mipi 3.EDP:Embedded DisplayPort 4.VGA VGA接口的特性: 1)理论上能够支持2048x1536分辨率画面传输. 2)VGA由于是模拟信号传输,所 ...
- ubuntu + lamp + laravel 环境配置
首先是LAMP 安装顺序是 A(Apache服务器) M(Mysql) P(Php) 安装apache sudo apt-get install apache2 安装mysql sudo apt-g ...
- 轻松搞定RabbitMQ(六)——主题
转自 http://blog.csdn.net/xiaoxian8023/article/details/48806871 翻译地址:http://www.rabbitmq.com/tutorials ...
- JS实现搜索模糊匹配
Js代码 <script type="text/javascript"> var websites = [["1231","账上1&q ...
- python訪问redis
python訪问redis 1 Linux上安装redis a) 下载 $ wget http://download.redis.io/releases/redis-3.0.5.tar.gz b) 编 ...
- kubernetes高级之创建只读文件系统以及只读asp.net core容器
系列目录 使用docker创建只读文件系统 容器化部署对应用的运维带来了极大的方便,同时也带来一些新的安全问题需要考虑.比如黑客入侵到容器内,对容器内的系统级别或者应用级别文件进行修改,会造成难以估量 ...
- UNIX网络编程卷1 时间获取程序client TCP 使用非堵塞connect
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie 1.当在一个非堵塞的 TCP 套接字(可使用 fcntl 把套接字变成非堵塞的)上调用 co ...
- storm是怎样保证at least once语义的
背景 本篇看看storm是通过什么机制来保证消息至少处理一次的语义的. storm中的一些原语 要说明上面的问题,得先了解storm中的一些原语,比方: tuple和message 在storm中,消 ...
- php 去除html标记-strip_tags和htmlspecialchars的区别
strip_tags 去掉 HTML 及 PHP 的标记. 语法: string strip_tags(string str); 传回值: 字串 函式种类: 资料处理 内容说明 本函式可去掉字串中包含 ...