Codeforces 1108E2 Array and Segments (Hard version) 差分, 暴力
Codeforces 1108E2
E2. Array and Segments (Hard version)
Description:
The only difference between easy and hard versions is a number of elements in the array.
You are given an array \(a\) consisting of \(n\) integers. The value of the \(i\)-th element of the array is \(a_i\).
You are also given a set of \(m\) segments. The \(j\)-th segment is \([l_j; r_j]\), where \(1 \le l_j \le r_j \le n\).
You can choose some subset of the given set of segments and decrease values on each of the chosen segments by one (independently). For example, if the initial array \(a = [0, 0, 0, 0, 0]\) and the given segments are \([1; 3]\) and \([2; 4]\) then you can choose both of them and the array will become \(b = [-1, -2, -2, -1, 0]\).
You have to choose some subset of the given segments (each segment can be chosen at most once) in such a way that if you apply this subset of segments to the array \(a\) and obtain the array \(b\) then the value \(\max\limits_{i=1}^{n}b_i - \min\limits_{i=1}^{n}b_i\) will be maximum possible.
Note that you can choose the empty set.
If there are multiple answers, you can print any.
If you are Python programmer, consider using PyPy instead of Python when you submit your code.
Input:
The first line of the input contains two integers \(n\) and \(m\) (\(1 \le n \le 10^5, 0 \le m \le 300\)) — the length of the array \(a\) and the number of segments, respectively.
The second line of the input contains \(n\) integers \(a_1, a_2, \dots, a_n\) (\(-10^6 \le a_i \le 10^6\)), where \(a_i\) is the value of the \(i\)-th element of the array \(a\).
The next \(m\) lines are contain two integers each. The \(j\)-th of them contains two integers \(l_j\) and \(r_j\) (\(1 \le l_j \le r_j \le n\)), where \(l_j\) and \(r_j\) are the ends of the \(j\)-th segment.
Output
In the first line of the output print one integer \(d\) — the maximum possible value \(\max\limits_{i=1}^{n}b_i - \min\limits_{i=1}^{n}b_i\) if \(b\) is the array obtained by applying some subset of the given segments to the array \(a\).
In the second line of the output print one integer \(q\) (\(0 \le q \le m\)) — the number of segments you apply.
In the third line print \(q\) distinct integers \(c_1, c_2, \dots, c_q\) in any order (\(1 \le c_k \le m\)) — indices of segments you apply to the array \(a\) in such a way that the value \(\max\limits_{i=1}^{n}b_i - \min\limits_{i=1}^{n}b_i\) of the obtained array \(b\) is maximum possible.
If there are multiple answers, you can print any.
Sample Input:
5 4
2 -2 3 1 2
1 3
4 5
2 5
1 3
Sample Output:
6
2
4 1
Sample Input:
5 4
2 -2 3 1 4
3 5
3 4
2 4
2 5
Sample Output:
7
2
3 2
Sample Input:
1 0
1000000
Sample Output:
0
0
题目链接
题解:
有一个长为\(n\)的数列,有\(m\)个线段,每个线段将该线段区间的所有数减一,你可以选任意个线段,要求最大化极差并输出一种方案
这种极差的题一个套路是固定最大值求最小值
那么我们可以枚举每一个数作为最大值的方案,对不包含这个数的线段进行操作,然后找最大最小值即可,利用差分的思想单次操作可以\(O(1)\),最后查询极值\(O(n)\),这样我们就找到了一个\(O(n^2)\)的优秀算法,可以通过这题的简单版本
然后我们注意到线段数很少,只有\(300\)个,那么我们可以将原数列分为至多\(600\)段,每一段的数作为最大值时策略是相同的,我们就的到了\(O(n \cdot m +m^2)\)的算法,cf机子上跑得飞快
另外,可以用线段树加速操作得到\(O(mlog(n))\)的做法
甚至可以将\(n\)也变成\(m\),因为我们只关心每一段的极值,可以把原数列切成至多\(600\)段,每一段记录最大最小值即可,复杂度为\(O(m^2)\), 不知道为什么评论指出这个算法的老哥的代码跑的还没我\(O(n \cdot m + m^2)\)快...
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10, M = 310;
int n, a[N], b[N], ans, l[M], r[M], m, rec, cnt;
set<int> key;
int main() {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
for(int i = 1; i <= m; ++i) {
scanf("%d%d", &l[i], &r[i]);
key.insert(l[i]);
key.insert(r[i] + 1);
}
ans = *max_element(a + 1, a + n + 1) - *min_element(a + 1, a + n + 1);
for(auto it = key.begin(); it != key.end(); ++it) {
int i = *it; ++cnt;
memset(b, 0, sizeof(b));
int mx = -1e9, mn = 1e9, sum = 0;
for(int j = 1; j <= m; ++j) {
if(l[j] <= i && i <= r[j]) continue;
b[l[j]]--, b[r[j] + 1]++;
}
for(int j = 1; j <= n; ++j) {
sum += b[j];
mx = max(mx, a[j] + sum);
mn = min(mn, a[j] + sum);
}
if(mx - mn > ans) {
rec = i;
ans = mx - mn;
}
}
printf("%d\n", ans);
if(rec) {
vector<int> res;
for(int i = 1; i <= m; ++i) {
if(l[i] <= rec && rec <= r[i]) continue;
res.push_back(i);
}
printf("%d\n", (int)res.size());
for(int i = 0; i < res.size(); ++i)
printf("%d%c", res[i], " \n"[i == res.size() - 1]);
}
else
puts("0\n");
return 0;
}
Codeforces 1108E2 Array and Segments (Hard version) 差分, 暴力的更多相关文章
- Codeforces 1108E2 Array and Segments (Hard version)(差分+思维)
题目链接:Array and Segments (Hard version) 题意:给定一个长度为n的序列,m个区间,从m个区间内选择一些区间内的数都减一,使得整个序列的最大值减最小值最大. 题解:利 ...
- codeforces#1108E2. Array and Segments (线段树+扫描线)
题目链接: http://codeforces.com/contest/1108/problem/E2 题意: 给出$n$个数和$m$个操作 每个操作是下标为$l$到$r$的数减一 选出某些操作,使$ ...
- E1. Array and Segments (Easy version)(暴力) && E2. Array and Segments (Hard version)(线段树维护)
题目链接: E1:http://codeforces.com/contest/1108/problem/E1 E2:http://codeforces.com/contest/1108/problem ...
- Codeforces Round #535 (Div. 3) E2. Array and Segments (Hard version) 【区间更新 线段树】
传送门:http://codeforces.com/contest/1108/problem/E2 E2. Array and Segments (Hard version) time limit p ...
- CF1108E2 Array and Segments (Hard version)
线段树 对于$Easy$ $version$可以枚举极大值和极小值的位置,然后判断即可 但对于$Hard$ $version$明显暴力同时枚举极大值和极小值会超时 那么,考虑只枚举极小值 对于数轴上每 ...
- Array and Segments (Easy version) CodeForces - 1108E1 (暴力枚举)
The only difference between easy and hard versions is a number of elements in the array. You are giv ...
- 【Codeforces 1108E1】Array and Segments (Easy version)
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 枚举最大值和最小值在什么地方. 显然,只要包含最小值的区间,都让他减少. 因为就算那个区间包含最大值,也无所谓,因为不会让答案变小. 但是那些 ...
- CF E2 - Array and Segments (Hard version) (线段树)
题意给定一个长度为n的序列,和m个区间.对一个区间的操作是:对整个区间的数-1可以选择任意个区间(可以为0个.每个区间最多被选择一次)进行操作后,要求最大化的序列极差(极差即最大值 - 最小值).ea ...
- Codeforces 1108E (Array and Segments) 线段树
题意:给你一个长度为n的序列和m组区间操作,每组区间操作可以把区间[l, r]中的数字都-1,请选择一些操作(可以都不选),使得序列的最大值和最小值的差值尽量的大. 思路:容易发现如果最大值和最小值都 ...
随机推荐
- ffmpeg 视频教程 添加水印附源码
本文主要讲述如何利用Ffmpeg向视频文件 添加水印这一功能,文中最后会给出源代码下载地址以及视频 下载地址,视频除了讲述添加水印的基本原理以及代码实现,还提到了要注意的一些地方,因为直接运行 dem ...
- tree related problems (update continuously)
leetcode Binary Tree Level Order Traversal 这道题是要进行二叉树的层次遍历.对于层次遍历,最简单直观的办法就是进行BFS.于是我们仅仅须要维护一个队列就能够了 ...
- 用callgraph生成的两张函数调用关系图
参考这里,感觉很Cool吧. Linux-0.11函数调用关系图: QEMU函数调用关系图:
- iOS开发 如何检查内存泄漏
本文转载至 http://mobile.51cto.com/iphone-423391.htm 在开发的时候内存泄漏是不可避免的,但是也是我们需要尽量减少的,因为内存泄漏可能会很大程度的影响程序的稳定 ...
- cmake中的变量和命令的大小写
1 cmake中要特别注意命令和变量的大小写 2 cmake的内置命令是不区分大小写的 3 cmake内置变量是区分大小写的,或者干脆就说,cmake的所有变量都是区分大小写的 这就是变量和命令的不同 ...
- java会不会出现内存泄露
1 什么是java内存泄露 当java中的对象生命周期已经结束,本应该释放,但是却长时间不能被释放时,也就是说,内存被浪费了,就是内存泄露. 2 java内存泄露的根本原因 长生命周期的对象中持有短生 ...
- go网关
package main import ( "flag" "fmt" "io" "net" "os" ...
- Use Apache HBase™ when you need random, realtime read/write access to your Big Data.
Apache HBase™ is the Hadoop database, a distributed, scalable, big data store. Use Apache HBase™ whe ...
- Struts action
<action name="KnowledgeBankManageAction_*" class="knowledgeBankManageAction" ...
- DIY固件系列教程——实现开机LOGO三屏动画的完全替换【转】
本文转载自:http://blog.csdn.net/sdgaojian/article/details/9192433 本教程需要用到如下工具:1,7Z压缩工具2,AddCrc32效验工具3,raw ...