bzoj 3778: 共鸣【计算几何+dp】
枚举起点,然后设f[i][j]为上凸壳上一个点是i当前点是j的最大面积,g是下凸壳,然后合并的时候枚举结束点t合并上下凸壳即可
这样的好处是每次转移都是往凸多边形里加一个三角形(s,i,j),所以判断转移合法只要预处理出所有三角形是否合法即可,同时预处理出三角形面积,转移就是f[j][k]=max(f[j][k],f[i][j]+c[s][j][k]);
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=105;
int n,m;
double c[N][N][N],f[N][N],g[N][N],ans;
bool v[N][N][N];
struct dian
{
double x,y;
dian(double X=0,double Y=0)
{
x=X,y=Y;
}
dian operator + (const dian &a) const
{
return dian(x+a.x,y+a.y);
}
dian operator - (const dian &a) const
{
return dian(x-a.x,y-a.y);
}
}a[N],b[N];
bool cmp(const dian &a,const dian &b)
{
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
double cj(dian a,dian b)
{
return a.x*b.y-a.y*b.x;
}
bool ok(dian x,dian y,dian z)
{
for(int i=1; i<=m; i++)
{
if(cj(b[i]-x,y-x)>=0&&cj(b[i]-y,z-y)>=0&&cj(b[i]-z,x-z)>=0)
return 0;
if(cj(b[i]-x,y-x)<=0&&cj(b[i]-y,z-y)<=0&&cj(b[i]-z,x-z)<=0)
return 0;
}
return 1;
}
double mj(dian a,dian b,dian c)
{
return abs(cj(b-a,c-a))/2;
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
a[i].x=read(),a[i].y=read();
for(int i=1;i<=m;i++)
b[i].x=read(),b[i].y=read();
sort(a+1,a+1+n,cmp);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
v[i][j][k]=ok(a[i],a[j],a[k]),c[i][j][k]=mj(a[i],a[j],a[k]);
for(int s=1;s<=n;s++)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
f[i][j]=g[i][j]=-1e9;
for(int i=s+1;i<=n;i++)
f[s][i]=g[s][i]=0;
for(int i=s;i<=n;i++)
for(int j=i+1;j<=n;j++)
for(int k=j+1;k<=n;k++)
if(v[s][j][k]&&cj(a[i]-a[j],a[k]-a[j])>=0)
f[j][k]=max(f[j][k],f[i][j]+c[s][j][k]);
for(int i=s;i<=n;i++)
for(int j=i+1;j<=n;j++)
for(int k=j+1;k<=n;k++)
if(v[s][j][k]&&cj(a[i]-a[j],a[k]-a[j])<=0)
g[j][k]=max(g[j][k],g[i][j]+c[s][j][k]);
for(int t=s+1;t<=n;t++)
for(int i=s;i<=t;i++)
for(int j=s;j<=t;j++)
ans=max(ans,f[i][t]+g[j][t]);
}
printf("%.2f\n",ans);
return 0;
}
bzoj 3778: 共鸣【计算几何+dp】的更多相关文章
- sdut 2153:Clockwise(第一届山东省省赛原题,计算几何+DP)
Clockwise Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 Saya have a long necklace with ...
- [BZOJ 3791] 作业 【DP】
题目链接:BZOJ - 3791 题目分析 一个性质:将一个序列染色 k 次,每次染连续的一段,最多将序列染成 2k-1 段不同的颜色. 那么就可以 DP 了,f[i][j][0|1] 表示到第 i ...
- [BZOJ 2165] 大楼 【DP + 倍增 + 二进制】
题目链接:BZOJ - 2165 题目分析: 这道题我读了题之后就想不出来怎么做,题解也找不到,于是就请教了黄学长,黄学长立刻秒掉了这道题,然后我再看他的题解才写出来..Orz 使用 DP + 倍增 ...
- BZOJ.3425.[POI2013]Polarization(DP 多重背包 二进制优化)
BZOJ 洛谷 最小可到达点对数自然是把一条路径上的边不断反向,也就是黑白染色后都由黑点指向白点.这样答案就是\(n-1\). 最大可到达点对数,容易想到找一个点\(a\),然后将其子树分为两部分\( ...
- BZOJ 4380 [POI2015]Myjnie | DP
链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...
- BZOJ.5311.贞鱼(DP 决策单调)
题目链接 很容易写出\(O(n^2k)\)的DP方程.然后显然决策点是单调的,于是维护决策点就可以了.. 这个过程看代码或者别的博客吧我不写了..(其实是忘了) 这样复杂度\(O(nk\log n)\ ...
- 【BZOJ 3090】 树形DP
3090: Coci2009 [podjela] Description 有 N 个农民, 他们住在 N 个不同的村子里. 这 N 个村子形成一棵树.每个农民初始时获得 X 的钱.每一次操作, 一个农 ...
- POJ3178 计算几何+DP
//一些点一些圆,过圆不能连线,相邻点不能连线,问最多连几条线 //计算几何模板+区间dp //关键是判断圆和线段是否相交 #include <cstdio> #include <c ...
- 『HGOI 20190917』Cruise 题解 (计算几何+DP)
题目概述 在平面直角坐标系的第$1$象限和第$4$象限有$n$个点,其中第$i$个点的坐标为$(x_i,y_i)$,有一个权值$p_i$ 从原点$O(0,0)$出发,不重复的经过一些点,最终走到原点, ...
随机推荐
- 未开启HugePages ORACLE session剧增时引起的一次悲剧
故障简单描写叙述一下:LINUX系统未开启HugePages,主机内存将近300G.SWAP是32G.ORACLE 的 SGA_MAX_SIZE设置是主机内存的将近80%,SGA_TARGET设置是主 ...
- Nginx+ffmpeg的HLS开源server搭建配置及开发具体解释
本文概述: 至眼下为止.HLS 是移动平台上很重要并十分流行的流媒体传输协议.做移动平台的流媒体开发,不知道它不掌握它 .真是一大遗憾.而HLS的平台搭建有一定的难度,本文针对对该方向有一定了解的朋友 ...
- 九度OJ 1134:密码翻译 (翻译)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1988 解决:810 题目描述: 在情报传递过程中,为了防止情报被截获,往往需要对情报用一定的方式加密,简单的加密算法虽然不足以完全避免情报 ...
- cpio
1 压缩 -o,生成cpio格式的归档文件.从标准输入获取文件名列表. 2 解压 -i,对cpio格式的归档文件进行解压,生成单个的文件. 3 --null 从标准输入获取的文件名列表为"\ ...
- 清理yum 缓存
两条命令 yum clean all 以及 rm -rf /var/cache/yum/* 如何有效的清理yum缓存 - CSDN博客 https://blog.csdn.net/nsrainbow/ ...
- ArcGIS10和ArcGIS10.1关于AO Licence初始化的问题
两个版本主要是esriLicenseProductCode.esriLicenseProductCodeArcInfo和esriLicenseProductCode.esriLicenseProduc ...
- ABAP 通过字段找表程序
2.获取数据保存在哪个数据表的方法: 1.前台对指定栏位 使用F1帮助找表,2.st05 跟踪业务操作过程,检索需要的数据表,(此方法找表很高效)3.对于文本字段找表,可以找到前台维护处,->维 ...
- 谷歌浏览器使用SelectorGadget和Xpath Helper获取xpath和css path
在上篇文章里,介绍了如何在火狐浏览器中获取网页元素的xpath和css path. 这篇文章将介绍,在谷歌浏览器中使用SelectorGadget和Xpath Helper实现同样功能. 这两个谷歌浏 ...
- UIBezierPath(转)
@import url(/css/cuteeditor.css); @import url(/css/cuteeditor.css); @import url(http://i.cnblogs.com ...
- iOS 两个tableview的 瀑布流
iOS 两个tableview的 瀑布流1. [代码]Objective-C //// DocViewController.m// getrightbutton//// Created ...