枚举起点,然后设f[i][j]为上凸壳上一个点是i当前点是j的最大面积,g是下凸壳,然后合并的时候枚举结束点t合并上下凸壳即可

这样的好处是每次转移都是往凸多边形里加一个三角形(s,i,j),所以判断转移合法只要预处理出所有三角形是否合法即可,同时预处理出三角形面积,转移就是f[j][k]=max(f[j][k],f[i][j]+c[s][j][k]);

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=105;
int n,m;
double c[N][N][N],f[N][N],g[N][N],ans;
bool v[N][N][N];
struct dian
{
double x,y;
dian(double X=0,double Y=0)
{
x=X,y=Y;
}
dian operator + (const dian &a) const
{
return dian(x+a.x,y+a.y);
}
dian operator - (const dian &a) const
{
return dian(x-a.x,y-a.y);
}
}a[N],b[N];
bool cmp(const dian &a,const dian &b)
{
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
double cj(dian a,dian b)
{
return a.x*b.y-a.y*b.x;
}
bool ok(dian x,dian y,dian z)
{
for(int i=1; i<=m; i++)
{
if(cj(b[i]-x,y-x)>=0&&cj(b[i]-y,z-y)>=0&&cj(b[i]-z,x-z)>=0)
return 0;
if(cj(b[i]-x,y-x)<=0&&cj(b[i]-y,z-y)<=0&&cj(b[i]-z,x-z)<=0)
return 0;
}
return 1;
}
double mj(dian a,dian b,dian c)
{
return abs(cj(b-a,c-a))/2;
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
a[i].x=read(),a[i].y=read();
for(int i=1;i<=m;i++)
b[i].x=read(),b[i].y=read();
sort(a+1,a+1+n,cmp);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
v[i][j][k]=ok(a[i],a[j],a[k]),c[i][j][k]=mj(a[i],a[j],a[k]);
for(int s=1;s<=n;s++)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
f[i][j]=g[i][j]=-1e9;
for(int i=s+1;i<=n;i++)
f[s][i]=g[s][i]=0;
for(int i=s;i<=n;i++)
for(int j=i+1;j<=n;j++)
for(int k=j+1;k<=n;k++)
if(v[s][j][k]&&cj(a[i]-a[j],a[k]-a[j])>=0)
f[j][k]=max(f[j][k],f[i][j]+c[s][j][k]);
for(int i=s;i<=n;i++)
for(int j=i+1;j<=n;j++)
for(int k=j+1;k<=n;k++)
if(v[s][j][k]&&cj(a[i]-a[j],a[k]-a[j])<=0)
g[j][k]=max(g[j][k],g[i][j]+c[s][j][k]);
for(int t=s+1;t<=n;t++)
for(int i=s;i<=t;i++)
for(int j=s;j<=t;j++)
ans=max(ans,f[i][t]+g[j][t]);
}
printf("%.2f\n",ans);
return 0;
}

bzoj 3778: 共鸣【计算几何+dp】的更多相关文章

  1. sdut 2153:Clockwise(第一届山东省省赛原题,计算几何+DP)

    Clockwise Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Saya have a long necklace with ...

  2. [BZOJ 3791] 作业 【DP】

    题目链接:BZOJ - 3791 题目分析 一个性质:将一个序列染色 k 次,每次染连续的一段,最多将序列染成 2k-1 段不同的颜色. 那么就可以 DP 了,f[i][j][0|1] 表示到第 i ...

  3. [BZOJ 2165] 大楼 【DP + 倍增 + 二进制】

    题目链接:BZOJ - 2165 题目分析: 这道题我读了题之后就想不出来怎么做,题解也找不到,于是就请教了黄学长,黄学长立刻秒掉了这道题,然后我再看他的题解才写出来..Orz 使用 DP + 倍增 ...

  4. BZOJ.3425.[POI2013]Polarization(DP 多重背包 二进制优化)

    BZOJ 洛谷 最小可到达点对数自然是把一条路径上的边不断反向,也就是黑白染色后都由黑点指向白点.这样答案就是\(n-1\). 最大可到达点对数,容易想到找一个点\(a\),然后将其子树分为两部分\( ...

  5. BZOJ 4380 [POI2015]Myjnie | DP

    链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...

  6. BZOJ.5311.贞鱼(DP 决策单调)

    题目链接 很容易写出\(O(n^2k)\)的DP方程.然后显然决策点是单调的,于是维护决策点就可以了.. 这个过程看代码或者别的博客吧我不写了..(其实是忘了) 这样复杂度\(O(nk\log n)\ ...

  7. 【BZOJ 3090】 树形DP

    3090: Coci2009 [podjela] Description 有 N 个农民, 他们住在 N 个不同的村子里. 这 N 个村子形成一棵树.每个农民初始时获得 X 的钱.每一次操作, 一个农 ...

  8. POJ3178 计算几何+DP

    //一些点一些圆,过圆不能连线,相邻点不能连线,问最多连几条线 //计算几何模板+区间dp //关键是判断圆和线段是否相交 #include <cstdio> #include <c ...

  9. 『HGOI 20190917』Cruise 题解 (计算几何+DP)

    题目概述 在平面直角坐标系的第$1$象限和第$4$象限有$n$个点,其中第$i$个点的坐标为$(x_i,y_i)$,有一个权值$p_i$ 从原点$O(0,0)$出发,不重复的经过一些点,最终走到原点, ...

随机推荐

  1. 【BZOJ4956】lydsy七月月赛 I 乱搞

    [BZOJ4956]lydsy七月月赛 I 题面 题解:傻题,Floyd传递闭包即可~ #include <cstdio> #include <cstring> #includ ...

  2. 解决Pods Unable to find a specification for `xxxxx`问题

    错误信息为 Unable to find a specification for *RMQClient* (~> 1.x.x) depended upon by Podfile 刚开始以为这个已 ...

  3. splittability A SequenceFile can be split by Hadoop and distributed across map jobs whereas a GZIP file cannot be.

    splittability CompressedStorage     Skip to end of metadata   Created by Confluence Administrator, l ...

  4. 拜托,面试请不要再问我TCC分布式事务的实现原理!(转)

    一.写在前面 之前网上看到很多写分布式事务的文章,不过大多都是将分布式事务各种技术方案简单介绍一下.很多朋友看了不少文章,还是不知道分布式事务到底怎么回事,在项目里到底如何使用. 所以咱们这篇文章,就 ...

  5. Machine Learning in Action(3) 朴素贝叶斯算法

    贝叶斯决策一直很有争议,今年是贝叶斯250周年,历经沉浮,今天它的应用又开始逐渐活跃,有兴趣的可以看看斯坦福Brad Efron大师对其的反思,两篇文章:“Bayes'Theorem in the 2 ...

  6. Multi-lingual Support

    Multi-lingual Support One problem with dealing with non-Latin characters programmatically is that, f ...

  7. xcode7和ios9下UIWebView不能加载网页的解决方法

    错误描述: App Transport Security has blocked a cleartext HTTP (http://) resource load since it is insecu ...

  8. CALayer的隐式动画

    CALayer的使用 在我的理解中CALayer就是iOS中利用图层精简非交互式绘图.那么那些核心动画类.也就是变化图层的非交互式绘制规则而已.其中的本质就是将CALayer中的内容转化为map图.从 ...

  9. Java诊断工具Arthas

    Java诊断工具Arthas 1. Arthas简介 Arthas是阿里开源的一个线上java诊断工具,发现阿里还是挺喜欢开源一些技术的,造福人类.昨天试用了一下,发现真是强大,解决了我工作两年的很多 ...

  10. android vector pathData探究,几分钟绘制自己的vectordrawable

    之前经常看到一些酷酷的图标效果, 深入进去发现不是直接用的图片, 而是一些以Vector标签开头的xml文件, 于是就看到了如下代码: <vector xmlns:android="h ...