codeforces 997E(线段树)
分析:
首先考虑如何计算整个数组有多少个good区间
容易发现一个区间是good区间当且仅当max-min-len=-1,且任意区间max-min-len>=-1
我们可以枚举右端点,然后维护前面每个位置到当前右端点的max-min-len值,容易发现我们只需要维护区间最小值和最小值的个数就行了,于是用线段树即可
于是我们可以得到以某个点为右端点的时候合法区间总数,那么我们把每次的结果加起来,就得到了整个数组有多少个good区间
每次右端点移动怎么更新呢?显然我们只需要用一个max单调栈,一个min单调栈来帮助寻找修改区间,容易知道修改区间的个数是O(n)级别的,所以整个修改是O(nlogn)的
好,现在我们回到原来的问题,如何求[l,r]内有多少个good区间
在这个问题中,我们实际上要额外知道“每个区间的历史答案和”,这是什么意思呢,比如说在i=7的时候,[4,7]里的答案存的是有多少个合法的位置是和7匹配的
但i=6的时候,[4,7]里的答案存的是有多少个合法的位置是和6匹配的
我们自然而然就考虑到把每个右端点时刻,一个区间的产生的答案值加起来就行了,但这个时间复杂度是巨大的
这里我们仍然可以用延迟标记来解决,比如右端点i枚举完了,我们可以给[1,i]上个tag,表示这整个区间的历史答案需要加上现在时刻的答案
时间复杂度O(nlogn)
#include<bits/stdc++.h>
using namespace std;
#define mp make_pair
const int maxn=;
struct wjmzbmr
{
int mi,num,tag;
int time;
long long ans;
}tree[maxn*+];
vector<pair<int,int> > q[maxn+];
long long ans[maxn+];
int a[maxn+],s[maxn+],s1[maxn+];
int len,len1;
int n,m;
void addtag(int k,int x)
{
tree[k].tag+=x;
tree[k].mi+=x;
}
void addtime(int k,int x)
{
tree[k].time+=x;
tree[k].ans+=1LL*x*tree[k].num;
}
void pushdown(int k)
{
if(tree[k].tag)
{
addtag(k*,tree[k].tag);
addtag(k*+,tree[k].tag);
tree[k].tag=;
}
if(tree[k].time)
{
if(tree[k].mi==tree[k*].mi) addtime(k*,tree[k].time);
if(tree[k].mi==tree[k*+].mi) addtime(k*+,tree[k].time);
tree[k].time=;
}
}
void update(int k)
{
tree[k].mi=min(tree[k*].mi,tree[k*+].mi);
tree[k].ans=tree[k*].ans+tree[k*+].ans;
tree[k].num=;
if(tree[k].mi==tree[k*].mi) tree[k].num+=tree[k*].num;
if(tree[k].mi==tree[k*+].mi) tree[k].num+=tree[k*+].num;
}
void build(int k,int l,int r)
{
if(l>r) return;
if(l==r)
{
tree[k].num=;
tree[k].mi=-;
return;
}
int mid=(l+r)>>;
build(k*,l,mid);
build(k*+,mid+,r);
update(k);
}
void modify(int k,int l,int r,int ql,int qr,int x)
{
if(r<ql||l>qr||l>r) return;
if(l>=ql&&r<=qr)
{
addtag(k,x);
return;
}
if(l==r) return;
pushdown(k);
int mid=(l+r)>>;
modify(k*,l,mid,ql,qr,x);
modify(k*+,mid+,r,ql,qr,x);
update(k);
}
void modify1(int k,int l,int r,int ql,int qr,int x)
{
if(r<ql||l>qr||l>r) return;
if(l>=ql&&r<=qr)
{
if(tree[k].mi==-)
addtime(k,x);
return;
}
if(l==r) return;
pushdown(k);
int mid=(l+r)>>;
modify1(k*,l,mid,ql,qr,x);
modify1(k*+,mid+,r,ql,qr,x);
update(k);
}
long long query(int k,int l,int r,int ql,int qr)
{
if(r<ql||l>qr||l>r) return ;
if(l>=ql&&r<=qr) return tree[k].ans;
if(l==r) return ;
pushdown(k);
int mid=(l+r)>>;
long long ans=query(k*,l,mid,ql,qr)+query(k*+,mid+,r,ql,qr);
update(k);
return ans;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;++i) scanf("%d",&a[i]);
scanf("%d",&m);
for(int i=;i<=m;++i)
{
int l,r;
scanf("%d%d",&l,&r);
q[r].push_back(mp(l,i));
}
build(,,n);
for(int i=;i<=n;++i)
{
while(len&&a[s[len]]<a[i]) modify(,,n,s[len-]+,s[len],a[i]-a[s[len]]),--len;
s[++len]=i;
//for(int j=1;j<=len;++j) printf("%d ",a[s[j]]);printf("\n");
while(len1&&a[s1[len1]]>a[i]) modify(,,n,s1[len1-]+,s1[len1],a[s1[len1]]-a[i]),--len1;
s1[++len1]=i;
//for(int j=1;j<=len1;++j) printf("%d ",a[s1[j]]);printf("\n");
modify1(,,n,,i,);
for(auto x:q[i]) ans[x.second]=query(,,n,x.first,i);
//printf("%lld\n",query(1,1,n,1,i));
//if(i==4) printf("%d\n",tree[2].ans);
modify(,,n,,i,-); }
for(int i=;i<=m;++i) printf("%lld\n",ans[i]);
return ;
}
codeforces 997E(线段树)的更多相关文章
- Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论
Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...
- Codeforces Round #424 (Div. 2, rated, based on VK Cup Finals) Problem E (Codeforces 831E) - 线段树 - 树状数组
Vasily has a deck of cards consisting of n cards. There is an integer on each of the cards, this int ...
- Codeforces 938G 线段树分治 线性基 可撤销并查集
Codeforces 938G Shortest Path Queries 一张连通图,三种操作 1.给x和y之间加上边权为d的边,保证不会产生重边 2.删除x和y之间的边,保证此边之前存在 3.询问 ...
- codeforces 1136E 线段树
codeforces 1136E: 题意:给你一个长度为n的序列a和长度为n-1的序列k,序列a在任何时候都满足如下性质,a[i+1]>=ai+ki,如果更新后a[i+1]<ai+ki了, ...
- Z - New Year Tree CodeForces - 620E 线段树 区间种类 bitset
Z - New Year Tree CodeForces - 620E 这个题目还没有写,先想想思路,我觉得这个题目应该可以用bitset, 首先这个肯定是用dfs序把这个树转化成线段树,也就是二叉树 ...
- D - The Bakery CodeForces - 834D 线段树优化dp···
D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...
- B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路
B - Legacy CodeForces - 787D 这个题目开始看过去还是很简单的,就是一个最短路,但是这个最短路的建图没有那么简单,因为直接的普通建图边太多了,肯定会超时的,所以要用线段树来优 ...
- CodeForces 343D 线段树维护dfs序
给定一棵树,初始时树为空 操作1,往某个结点注水,那么该结点的子树都注满了水 操作2,将某个结点的水放空,那么该结点的父亲的水也就放空了 操作3,询问某个点是否有水 我们将树进行dfs, 生成in[u ...
- Linear Kingdom Races CodeForces - 115E (线段树优化dp)
大意: n条赛道, 初始全坏, 修复第$i$条花费$a_i$, m场比赛, 第$i$场比赛需要占用$[l_i,r_i]$的所有赛道, 收益为$w_i$, 求一个比赛方案使得收益最大. 设$dp[i]$ ...
随机推荐
- static 的三个作用
1).用于声明函数体内的变量为静态局部变量,存储在静态数据存储区,在函数被调用过程中维持其值保持不变 2).在文件内(函数体外)被声明为静态的变量,可以被文件内的所有函数访问,但不能被其他文件的函数访 ...
- Counting Cliques HDU - 5952 单向边dfs
题目:题目链接 思路:这道题vj上Time limit:4000 ms,HDU上Time Limit: 8000/4000 MS (Java/Others),且不考虑oj测评机比现场赛慢很多,但10月 ...
- Git for Windows 工具的使用(二)
Git分支 当一个人开发功能A而另一个人开发功能B,之后代码进行整合的时候,使代码既有功能A也有功能B.在Git中,Git给了我们分支的概念. 分支可以使用我们快速的开发协作,并且快速的合并. 分支 ...
- selenium2等待元素加载
1.硬性等待 Thread.sleep(8000); 所谓的硬性等待就是,执行完相应操作就等待我设置的8s.无论网速快与慢,网速快的话,也许5s就打开网页了,可是程序必须接着等待剩下的3秒. 网速慢的 ...
- POJ2594拐点弯的二分
开始读题没理解题意,以为就是覆盖,可是怎么交都不对... 我就气愤了,结果去百度了一下发现奶奶的这题的机器人是可以隔点瞭望的,例如1->2->3.2->4.5->2 这个图 ...
- js实现获取当前时间是本月第几周的方法
这篇文章主要介绍了js实现获取当前时间是本月第几周的方法,涉及javascript针对日期及时间的相关操作技巧,非常简单实用,需要的朋友可以参考下. 本文实例讲述了js实现获取当前时间是本月第几周的方 ...
- SAS描述统计量
MEANS过程 MEAN过程默认输出的统计量有:观测总数.均值.标准差.最大值和最小值.如果要计算其他统计量或其中的某一些统计量,则可在PROC语句中指定统计量的关键字. BY语句规定了分组变量,要求 ...
- IOS开发之----全局变量extern的使用
extern,作用在IOS中,为了使用全局变量.比写在appDelegate和定义单例方便一些: 举例: 1.MyExternClass.h添加这个类,并在.m文件添加 代码 #import &quo ...
- ogre3D程序实例解析1-平移旋转与缩放
接着上篇写 http://www.cnblogs.com/songliquan/p/3294902.html 旋转 这里有必要看一下关于旋转的源代码: virtual void pitch(co ...
- SQL 与或运算
如果一个字段需要同时包含多个信息点, 最佳的方法是进行位运算,如:1,2,4,8,16 根据与运算进行判断,如一个字段为7,判断2是否存在, 7&2 = 2为ture时,表示存在,反之亦然, ...