Codeforces 321D Ciel and Flipboard(结论题+枚举)
题目链接 Ciel and Flipboard
题意 给出一个$n*n$的正方形,每个格子里有一个数,每次可以将一个大小为$x*x$的子正方形翻转
翻转的意义为该区域里的数都变成原来的相反数。
求经过若干次操作之后整个正方形的所有数之和。
这题关键就是要知道这个结论。
假设$st[i][j]$为$a[i][j]$的翻转情况($st[i][j] = 0$ 不翻转 $st[i][j] = 1$ 翻转)
那么一定有 $st[i][j]$ xor $st[i][x]$ xor $st[i][j + x]$ = $0$
这是行的情况
那么对于列的情况也有
$st[i][j]$ xor $st[x][j]$ xor $st[i + x][j]$ = $0$
每一个式子中,我们求出了两项,就可以知道另外一项。
考虑枚举$st[x][1]$, $st[x][2]$, $st[x][3]$, ..., $st[x][x]$
这样一共有$2^{17}$种枚举方案
根据上面的结论,枚举了这$x$个元素之后,这一行的剩下全部元素都知道了
也就是说我们花了$2^{x}$的复杂度,得到了中间这一行的所有情况。
接着我们要对剩下的一些未知情况进行枚举。
首先我们枚举$st[1][x]$($0$ or $1$)
这样的话我们得到了$st[x + 1][x]$的值
在知道这两个值的情况下, 我们再枚举$st[1][1]$的值($0$ or $1$)
于是根据所有之前得到的值,我们可以得到$st[1][1], st[1][x + 1], st[x + 1][1], st[x + 1][x + 1]$
我们根据这些枚举得到的值算出$a[1][1] + a[1][x + 1] + a[x + 1][1] + a[x + 1][x + 1]$在$st[1][1]$等于$0$或$1$的时候哪个更大
处理完$st[1][1]$这边之后我们处理$st[1][2]$(同枚举$st[1][1]$的方法),直到处理到$st[1][x - 1]$。
然后我们枚举$st[2][x]$($0$ or $1$)
......
直到枚举到$st[x - 1][x]$($0$ or $1$)
这样就把所有的情况都覆盖了。
时间复杂度$O(2^{x}x^{2})$
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) const int N = 53;
const int mul[2] = {1, -1}; int a[N][N];
int n, x;
int st[N][N];
int ans; int main(){ scanf("%d", &n);
rep(i, 0, n - 1) rep(j, 0, n - 1) scanf("%d", &a[i][j]);
x = (n + 1) / 2;
ans = -(1 << 30);
rep(s, 0, (1 << x) - 1){
int sum = 0;
rep(i, 0, x - 1) st[x - 1][i] = (s >> i) & 1;
rep(i, x, n - 1) st[x - 1][i] = st[x - 1][i - x] ^ st[x - 1][x - 1];
rep(i, 0, n - 1) sum += mul[st[x - 1][i]] * a[x - 1][i];
rep(i, 0, x - 2){
int cnt = -(1 << 30);
rep(op, 0, 1){
st[i][x - 1] = op;
st[i + x][x - 1] = op ^ st[x - 1][x - 1];
int now = a[i][x - 1] * mul[op] + a[i + x][x - 1] * mul[st[i + x][x - 1]];
rep(j, 0, x - 2){
int et = -(1 << 30);
rep(ct, 0, 1){
st[i][j] = ct;
st[i][j + x] = ct ^ st[i][x - 1];
st[i + x][j] = ct ^ st[x - 1][j];
st[i + x][j + x] = st[i + x][x - 1] ^ st[i + x][j];
et = max(et, a[i][j] * mul[st[i][j]] + a[i][j + x] * mul[st[i][j + x]] + a[i + x][j] * mul[st[i + x][j]] + a[i + x][j + x] * mul[st[i + x][j + x]]);
}
now += et;
}
cnt = max(cnt, now);
}
sum += cnt;
}
ans = max(ans, sum);
}
printf("%d\n", ans);
return 0;
}
Codeforces 321D Ciel and Flipboard(结论题+枚举)的更多相关文章
- [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard
[Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard 题意 给定一个 \(n\times n\) 的矩阵 \(A\), (\(n\) 为奇数) , ...
- codeforces 1269D. Domino for Young (二分图证明/结论题)
链接:https://codeforces.com/contest/1269/problem/D 题意:给一个不规则的网格,在上面放置多米诺骨牌,多米诺骨牌长度要么是1x2,要么是2x1大小,问最多放 ...
- 【bzoj4401】块的计数 结论题
题目描述 给出一棵n个点的树,求有多少个si使得整棵树可以分为n/si个连通块. 输入 第一行一个正整数N,表示这棵树的结点总数,接下来N-1行,每行两个数字X,Y表示编号为X的结点与编号为Y的结点相 ...
- [codevs5578][咸鱼]tarjan/结论题
5578 咸鱼 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 在广袤的正方形土地上有n条水平的河流和m条垂直的河流,发达的咸鱼家族在m*n个河流交叉点都 ...
- BZOJ_1367_[Baltic2004]sequence_结论题+可并堆
BZOJ_1367_[Baltic2004]sequence_结论题+可并堆 Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 ...
- [BZOJ3609][Heoi2014]人人尽说江南好 结论题
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要 ...
- 【uoj#282】长度测量鸡 结论题
题目描述 给出一个长度为 $\frac{n(n+1)}2$ 的直尺,要在 $0$ 和 $\frac{n(n+1)}2$ 之间选择 $n-1$ 个刻度,使得 $1\sim \frac{n(n+1)}2$ ...
- 【uoj#175】新年的网警 结论题+Hash
题目描述 给出一张 $n$ 个点 $m$ 条边的无向连通图,每条边的边权为1.对于每个点 $i$ ,问是否存在另一个点 $j$ ,使得对于任意一个不为 $i$ 或 $j$ 的点 $k$ ,$i$ 到 ...
- 【uoj#180】[UR #12]实验室外的攻防战 结论题+树状数组
题目描述 给出两个长度为 $n$ 的排列 $A$ 和 $B$ ,如果 $A_i>A_{i+1}$ 则可以交换 $A_i$ 和 $A_{i+1}$ .问是否能将 $A$ 交换成 $B$ . 输入 ...
随机推荐
- Optimization & Map
- phpExcel使用方法二
require_once './phpexcel/PHPExcel.php'; // 首先创建一个新的对象 PHPExcel object $objPHPExcel = new PHPExcel(); ...
- 常用排序算法的总结以及编码(Java实现)
常用排序算法的总结以及编码(Java实现) 本篇主要是总结了常用算法的思路以及相应的编码实现,供复习的时候使用.如果需要深入进行学习,可以使用以下两个网站: GeeksForGeeks网站用于学习相应 ...
- python学习博客推荐
https://www.liaoxuefeng.com/
- Python学习笔记:字符串
字符串 字符串定义:字符串可以使用一对单引号.双引号或三引号来定义,即便是单个字符也会当做字符串来处理(Python中没有字符类型,单个字符也就是只有一个字符的字符串而已). 原始字符串:字符串中反斜 ...
- leetcode-19-merge
88. Merge Sorted Array 解题思路: 需要注意,两个数组是排好序的,且nums1够大.所以从两个数组的尾端开始比较,大的那个放在nums1的尾部,并且放了之后就可以前进. 例如nu ...
- c++,友元类和友元函数
都是声明时友元的东西可以访问自己类的私有和保护成员 类的友元 友元是C++提供的一种破坏数据封装和数据隐藏的机制. 通过将一个模块声明为另一个模块的友元,一个模块能够引用到另一个模块中本是被隐藏的信息 ...
- Linux学习-X Server 配置文件解析与设定
X server 的配置 文件都是预设放置在 /etc/X11 目录下,而相关的显示模块或上面提到的总总模块,则主要放置在/usr/lib64/xorg/modules . 比较重要的是字型文件与芯片 ...
- Linux学习-进程管理
为什么进程管理这么重要呢? 这是因为: 首先,我们在操作系统时的各项工作其实都是经过某个 PID 来达成的 (包括你的 bash 环境), 因此,能不能进行某项工作,就与该进程的权限有关了. 再来,如 ...
- 如何锁定Android系统CPU的频率
接触到了Android系统的Performance测试,所以有锁定CPU的需求: 由于要首先读取到此系统所支持的CPU频率,之后再所支持的频率中选取你想要的频率,之后进行锁定. 这个过程,手动也是可以 ...