POJ 3181 Dollar Dayz(全然背包+简单高精度加法)
POJ 3181 Dollar Dayz(全然背包+简单高精度加法)
id=3181">http://poj.org/problem?id=3181
题意:
给你K种硬币,每种硬币各自是1美元,2美元…K美元且能够无限使用,问你用上面K种硬币构成n美元的话有多少种方法?
分析:
本题是一道明显的全然背包问题, 只是本题还能够换一种方法来看: 整数n由前K个自然数构造, 一共同拥有多少种方法?
(尽管本题要用到高精度加法,
可是非常easy, 不要被吓到哦)
首先是DP部分:
令dp[i][j]==x 表示由前i种硬币构成j美元一共同拥有x种方法.
初始化dp全0 且 dp[0][0]=1
状态转移: dp[i][j] = sum( dp[i-1][j] , dp[i][j-val[i]] ) //sum为求和,val[i]是第i种硬币的面值.
前者表示第i种硬币一个都不选, 后者表示至少选一个第i种硬币来用.
终于所求: dp[k][n]的值. 程序实现用的滚动数组, 所以dp仅仅有[j]一维.
其次是高精度部分:
假设输入1000 100时,输出将为:
15658181104580771094597751280645这个值超过了long long的范围. 所以这里我们须要用大整数来表示dp[i][j]的值. 我的大整数实现是用high和low 的组合来表示一个大整数的. 当中low表示大整数的十进制表示时的低18位数. high表示大整数的十进制表示时的高18位数.
整体来说实现比較简单.
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const long long BASE = 1e18;
const int maxn=1000+5; int n,k; //大整数类
class BigNum
{
public:
BigNum(){}
BigNum(long long high,long long low):high(high),low(low){}
long long high; //高18位
long long low; //低18位 //相加运算
BigNum operator+(BigNum &B)
{
long long high_tmp = (low+B.low)/BASE+high+B.high;
long long low_tmp = (low+B.low)%BASE;
return BigNum(high_tmp, low_tmp);
} //输出值
void print()
{
if(!high)//高位为0
printf("%I64d\n",low);
else //高位非0
{
printf("%I64d",high);
printf("%018I64d",low);
}
}
}dp[maxn]; int main()
{
while(scanf("%d%d",&n,&k)==2)
{
//初始化
memset(dp,0,sizeof(dp));
dp[0].low=1;//等效于令dp[0]=0; //递推
for(int i=1;i<=k;i++)
{
for(int j=i;j<=n;j++)
dp[j] = dp[j]+dp[j-i];
} //输出
dp[n].print();
} return 0;
}
POJ 3181 Dollar Dayz(全然背包+简单高精度加法)的更多相关文章
- POJ 3181 Dollar Dayz ( 完全背包 && 大数高精度 )
题意 : 给出目标金额 N ,问你用面额 1~K 拼成 N 的方案有多少种 分析 : 完全背包的裸题,完全背包在 DP 的过程中实际就是列举不同的装填方案数来获取最值的 故状态转移方程为 dp[i] ...
- POJ 3181 Dollar Dayz && Uva 147 Dollars(完全背包)
首先是 Uva 147:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_p ...
- poj 3181 Dollar Dayz(完全背包)
Dollar Dayz Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5419 Accepted: 2054 Descr ...
- POJ 3181 Dollar Dayz(高精度 动态规划)
题目链接:http://poj.org/problem?id=3181 题目大意:用1,2...K元的硬币,凑成N元的方案数. Sample Input 5 3 Sample Output 5 分析: ...
- POJ 3181 Dollar Dayz 01全然背包问题
01全然背包问题. 主要是求有多少种组合.二维dp做的人多了,这里使用一维dp就能够了. 一维的转换方程:dp[j] = dp[j-i] + dp[j];当中i代表重量,j代表当前背包容量. 意思就是 ...
- POJ 3181 Dollar Dayz (完全背包,大数据运算)
题意:给出两个数,n,m,问1~m中的数组成n,有多少种方法? 这题其实就相当于 UVA 674 Coin Change,求解一样 只不过数据很大,需要用到高精度运算... 后来还看了网上别人的解法, ...
- POJ 3181 Dollar Dayz 简单DP
这DP虽然简单 但是思考一下还是挺好的 题意是 1,2,3,4....k 用加法凑成N 每个数可取不限个数 令dp[i][j] 表示前i种数凑成j的方案数 然后dp[i][j] = dp[i - 1] ...
- poj 3181 Dollar Dayz(求组成方案的背包+大数)
可能nyist看见加的背包专题我老去凑热闹,觉得太便宜我了.他们新加的搜索专题居然有密码. 都是兄弟院校嘛!何必那么小气. 回到正题,跟我写的上一篇关于求组成方案的背包思路基本一样,无非就是一个二维费 ...
- POJ 3181 Dollar Dayz 【完全背包】
题意: 给出两个数,n,m,问m以内的整数有多少种组成n的方法完全背包+大数划分 思路: dp[i][j] := 用i种价格配出金额j的方案数. 那么dp[i][0] = 1,使用任何价格配出金额0的 ...
随机推荐
- [oldboy-django][1初始django]模态对话框 + 动态加载gif (多对多数据库表)
ajax+对话框(多对多) - 遮罩层,动态加载gif层,对话框层, a.一点击添加,绑定事件: - 出现遮罩层和动态gif层 - ajax向后台发送请求获取所有班级数据 - success,隐藏动态 ...
- 深入学习之mysql(二)表的操作
1.表:是数据库中的存储数据的基本单位,一个表包含若干个字段和值 2.创建表: CREATE TABLE 表名称 ( 字段名1 数据库类型1 [约束条件1], 字段名2 数据库类型2 [约束条件2], ...
- Eclipse 4.6(最新版本) js文件不能F3
解决办法........我是没找到解决4.6版本的办法!不过可以换一个版本!猜想是因为 最新版本强制要求使用jdk1.8所导致的~! 换了一个4.5版本就一切Ok 换上主题一样漂亮护眼
- BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】
题目 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少 ...
- bzoj 2387: [Ceoi2011]Traffic
bzoj 2387: [Ceoi2011]Traffic 题目描述 The center of Gdynia is located on an island in the middle of the ...
- vue的roter使用
1在src下建立router文件夹,再建立router.js import Vue from 'vue' import Router from 'vue-router' import home fro ...
- import组件的时候报错
去webpack.base.js配置 resolve: { extensions: ['.js', '.vue', '.json'], alias: { 'vue$': 'vue/dist/vue.e ...
- PowerDesigner常用快捷键
一般快捷键 F4 打开检查模型窗口,检查模型 F5 如果图窗口内的图改变过大小,恢复为原有大小即正常大小 F6 放大图窗口内的图 F7 缩小图窗口内的图 F8 在图窗口内中查看全部 ...
- 分裂游戏(bzoj 1188)
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子 ...
- Mysql EXISTS NOT EXISTS
SELECT c.CustomerId, CompanyName FROM Customers c WHERE EXISTS( SELECT OrderID FROM Orders o WHERE o ...