Convert from list

Apply np.array() method to convert a list to a numpy array:

 import numpy as np
mylist = [1, 2, 3]
x = np.array(mylist)
x

Output: array([1, 2, 3])

Or just pass in a list directly:

y = np.array([4, 5, 6])
y

Output: array([4, 5, 6])

Pass in a list of lists to create a multidimensional array:

m = np.array([[7, 8, 9], [10, 11, 12]])
m

Output:

array([[ 7,  8,  9],

[10, 11, 12]])

Array Generation Functions

arange returns evenly spaced values within a given interval.

n = np.arange(0, 30, 2) # start at 0 count up by 2, stop before 30
n

Output:

array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])

reshape returns an array with the same data with a new shape.

n = n.reshape(3, 5) # reshape array to be 3x5
n

Output:

array([[ 0,  2,  4,  6,  8],

[10, 12, 14, 16, 18],

[20, 22, 24, 26, 28]])

linspace returns evenly spaced numbers over a specified interval.

o = np.linspace(0, 4, 9) # return 9 evenly spaced values from 0 to 4
o

Output:

array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ])

resize changes the shape and size of array in-place.

o.resize(3, 3)
o

Output:

array([[0. , 0.5, 1. ],

[1.5, 2. , 2.5],

[3. , 3.5, 4. ]])

ones returns a new array of given shape and type, filled with ones.

np.ones((3, 2))

Output:

array([[1., 1.],

[1., 1.],

[1., 1.]])

zeros returns a new array of given shape and type, filled with zeros.

np.zeros((2, 3))

Output:

array([[0., 0., 0.],

[0., 0., 0.]])

eye returns a 2-D array with ones on the diagonal and zeros elsewhere.

np.eye(3)

Output:

array([[1., 0., 0.],

[0., 1., 0.],

[0., 0., 1.]])

diag extracts a diagonal or constructs a diagonal array.

np.diag(y)

Output:

array([[4, 0, 0],

[0, 5, 0],

[0, 0, 6]])

Create an array using repeating list (or see np.tile)

np.array([1, 2, 3] * 3)

Output:

array([1, 2, 3, 1, 2, 3, 1, 2, 3])

Repeat elements of an array using repeat.

np.repeat([1, 2, 3], 3)

Output:

array([1, 1, 1, 2, 2, 2, 3, 3, 3])

Random Number Generator

The numpy.random subclass provides many methods for random sampling. The following tabels list funtions in the module to generate random numbers.

Simple random data

Now I will summarize the usage of the first three funtions which I have met frequently.

numpy.random.rand creates an array of the given shape and populate it with random samples from a uniform  distribution over [0, 1). Parameters d0, d1, ..., dn define dimentions of returned array.

np.random.rand(2,3)

Output:

array([[0.20544659, 0.23520889, 0.11680902],

[0.56246922, 0.60270525, 0.75224416]])

numpy.random.randn creates an array of the given shape and populate it with random samples from a strandard normal distribution N(0,1). If any of the  are floats, they are first converted to integers by truncation. A single float randomly sampled from the distribution is returned if no argument is provided.

 # single random variable
print(np.random.randn(),'\n')
# N(0,1)
print(np.random.randn(2, 4),'\n')
# N(3,6.26)
print(2.5 * np.random.randn(2, 4) + 3,'\n')

Output:

-1.613647405772221

[[ 1.13147436  0.19641141 -0.62034454  0.61118876]

[ 0.95742223  1.91138142  0.2736291   0.29787331]]

[[ 1.997092    2.6460653   3.2408004  -0.81586404]

[ 0.15120766  1.23676426  6.59249789 -1.04078213]]

numpy. random.randint returns random integers from the “discrete uniform” distribution of the specified dtype in the interval [lowhigh). If high is None (the default), then results are from [0, low). The specific format is

numpy.random.randint(lowhigh=Nonesize=Nonedtype='l')

np.random.seed(10)
np.random.randint(100,200,(3,4))
np.random.randint(100,200)

Output:

array([[109, 115, 164, 128],

[189, 193, 129, 108],

[173, 100, 140, 136]])

109

Permutation

There are another two funtions used for permutations. Both of them can randomly permute an array. The only difference is that shuffle changes the original array but permutation doesn't.

Here are some examples of permutation.

np.random.permutation([1, 4, 9, 12, 15])

Output: array([ 9,  4,  1, 12, 15])

np.random.permutation(10)

Output: array([3, 7, 4, 6, 8, 2, 1, 5, 0, 9])

Usually, we use the following statements to perform random sampling:

permutation = list(np.random.permutation(m))  #m is the number of samples
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((1,m))





[Python Cookbook] Numpy: Multiple Ways to Create an Array的更多相关文章

  1. 「Python」Numpy equivalent of MATLAB's cell array

    转自Stackoverflow.备忘用. Question I want to create a MATLAB-like cell array in Numpy. How can I accompli ...

  2. [Python Cookbook] Numpy Array Slicing and Indexing

    1-D Array Indexing Use bracket notation [ ] to get the value at a specific index. Remember that inde ...

  3. [Python Cookbook] Numpy: Iterating Over Arrays

    1. Using for-loop Iterate along row axis: import numpy as np x=np.array([[1,2,3],[4,5,6]]) for i in ...

  4. [Python Cookbook] Numpy Array Joint Methods: Append, Extend & Concatenate

    数组拼接方法一 思路:首先将数组转成列表,然后利用列表的拼接函数append().extend()等进行拼接处理,最后将列表转成数组. 示例1: import numpy as np a=np.arr ...

  5. [Python Cookbook] Numpy: How to Apply a Function to 1D Slices along the Given Axis

    Here is a function in Numpy module which could apply a function to 1D slices along the Given Axis. I ...

  6. [Python Cookbook] Pandas: 3 Ways to define a DataFrame

    Using Series (Row-Wise) import pandas as pd purchase_1 = pd.Series({'Name': 'Chris', 'Item Purchased ...

  7. [Python Cookbook] Numpy Array Manipulation

    1. Reshape: The np.reshape() method will give a new shape to an array without changing its data. Not ...

  8. [转]python与numpy基础

    来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb ...

  9. 【Python】numpy 数组拼接、分割

    摘自https://docs.scipy.org 1.The Basics 1.1 numpy 数组基础 NumPy’s array class is called ndarray. ndarray. ...

随机推荐

  1. Diycode开源项目 LoginActivity分析

    1.首先看一下效果 1.1.预览一下真实页面 1.2.分析一下: 要求输入Email或者用户名,点击编辑框,弹出键盘,默认先进入输入Email或用户名编辑框. 点击密码后,密码字样网上浮动一段距离,E ...

  2. 校内考试之zay与银临(day1)

    T1大美江湖(洛谷P5006) zayの题解: 这个题的本质是模拟 不过有卡ceil的地方 ceil是对一个double进行向上取整,而对于int/int来说,返回值是int 举个生动的栗子 ceil ...

  3. Django templates(模板)

    为什么用templates? views.py视图函数是用来写Python代码的,HTML可以被直接硬编码在views.py之中.如下: import datetime def current_tim ...

  4. React基础(Diff算法,属性和状态)

    1.React的背景原理 (1)React Diff算法流程 (2)React虚拟DOM机制 React引入了虚拟DOM(Virtual DOM)的机制:在浏览器端用Javascript实现了一套DO ...

  5. ogre3D学习基础18 -- 材质的使用与脚本的简单书写

    这一节以基础16为基础,练习材质的使用. 第一,看看框架 //material #include "ExampleApplication.h" class TutorialAppl ...

  6. ogre3D学习基础15 -- 创建BSP Scene Manager

    BSP(binary-space partitioning) Scene Manager(二叉空间分割)场景管理器比较适合用于室内场景. 第一,添加框架代码如下 #include "Exam ...

  7. 嵌入式tcpip

    嵌入式tcpip方案 目前高端一点的嵌入式处理器,如STM32F107,都带有MAC,因此用户在实现网络功能的时候,只需要外界PHY层的芯片, 目前使用比较都的是DM9161A.网上的驱动也比较多,开 ...

  8. jmeter+ANT+Jekins性能自动生成测试报告脚本(模板),加入:Median TIme、90%、95%、99%、QPS、以及流量显示

    <?xml version="1.0"?><xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/T ...

  9. Mysql Error Code: 1175. You are using safe update mode and you tried to update a table without a WHERE that uses a KEY column

    Mysql update error: Error Code: 1175. You are using safe update mode and you tried to update a table ...

  10. [转] linux中 参数命令 -- 和 - 的区别

    在 Linux 的 shell 中,我们把 - 和 -- 加上一个字符(字符串)叫做命令行参数. 主流的有下面几种风格Unix 风格参数 前面加单破折线 -BSD 风格参数 前面不加破折线GNU 风格 ...