Convert from list

Apply np.array() method to convert a list to a numpy array:

 import numpy as np
mylist = [1, 2, 3]
x = np.array(mylist)
x

Output: array([1, 2, 3])

Or just pass in a list directly:

y = np.array([4, 5, 6])
y

Output: array([4, 5, 6])

Pass in a list of lists to create a multidimensional array:

m = np.array([[7, 8, 9], [10, 11, 12]])
m

Output:

array([[ 7,  8,  9],

[10, 11, 12]])

Array Generation Functions

arange returns evenly spaced values within a given interval.

n = np.arange(0, 30, 2) # start at 0 count up by 2, stop before 30
n

Output:

array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])

reshape returns an array with the same data with a new shape.

n = n.reshape(3, 5) # reshape array to be 3x5
n

Output:

array([[ 0,  2,  4,  6,  8],

[10, 12, 14, 16, 18],

[20, 22, 24, 26, 28]])

linspace returns evenly spaced numbers over a specified interval.

o = np.linspace(0, 4, 9) # return 9 evenly spaced values from 0 to 4
o

Output:

array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ])

resize changes the shape and size of array in-place.

o.resize(3, 3)
o

Output:

array([[0. , 0.5, 1. ],

[1.5, 2. , 2.5],

[3. , 3.5, 4. ]])

ones returns a new array of given shape and type, filled with ones.

np.ones((3, 2))

Output:

array([[1., 1.],

[1., 1.],

[1., 1.]])

zeros returns a new array of given shape and type, filled with zeros.

np.zeros((2, 3))

Output:

array([[0., 0., 0.],

[0., 0., 0.]])

eye returns a 2-D array with ones on the diagonal and zeros elsewhere.

np.eye(3)

Output:

array([[1., 0., 0.],

[0., 1., 0.],

[0., 0., 1.]])

diag extracts a diagonal or constructs a diagonal array.

np.diag(y)

Output:

array([[4, 0, 0],

[0, 5, 0],

[0, 0, 6]])

Create an array using repeating list (or see np.tile)

np.array([1, 2, 3] * 3)

Output:

array([1, 2, 3, 1, 2, 3, 1, 2, 3])

Repeat elements of an array using repeat.

np.repeat([1, 2, 3], 3)

Output:

array([1, 1, 1, 2, 2, 2, 3, 3, 3])

Random Number Generator

The numpy.random subclass provides many methods for random sampling. The following tabels list funtions in the module to generate random numbers.

Simple random data

Now I will summarize the usage of the first three funtions which I have met frequently.

numpy.random.rand creates an array of the given shape and populate it with random samples from a uniform  distribution over [0, 1). Parameters d0, d1, ..., dn define dimentions of returned array.

np.random.rand(2,3)

Output:

array([[0.20544659, 0.23520889, 0.11680902],

[0.56246922, 0.60270525, 0.75224416]])

numpy.random.randn creates an array of the given shape and populate it with random samples from a strandard normal distribution N(0,1). If any of the  are floats, they are first converted to integers by truncation. A single float randomly sampled from the distribution is returned if no argument is provided.

 # single random variable
print(np.random.randn(),'\n')
# N(0,1)
print(np.random.randn(2, 4),'\n')
# N(3,6.26)
print(2.5 * np.random.randn(2, 4) + 3,'\n')

Output:

-1.613647405772221

[[ 1.13147436  0.19641141 -0.62034454  0.61118876]

[ 0.95742223  1.91138142  0.2736291   0.29787331]]

[[ 1.997092    2.6460653   3.2408004  -0.81586404]

[ 0.15120766  1.23676426  6.59249789 -1.04078213]]

numpy. random.randint returns random integers from the “discrete uniform” distribution of the specified dtype in the interval [lowhigh). If high is None (the default), then results are from [0, low). The specific format is

numpy.random.randint(lowhigh=Nonesize=Nonedtype='l')

np.random.seed(10)
np.random.randint(100,200,(3,4))
np.random.randint(100,200)

Output:

array([[109, 115, 164, 128],

[189, 193, 129, 108],

[173, 100, 140, 136]])

109

Permutation

There are another two funtions used for permutations. Both of them can randomly permute an array. The only difference is that shuffle changes the original array but permutation doesn't.

Here are some examples of permutation.

np.random.permutation([1, 4, 9, 12, 15])

Output: array([ 9,  4,  1, 12, 15])

np.random.permutation(10)

Output: array([3, 7, 4, 6, 8, 2, 1, 5, 0, 9])

Usually, we use the following statements to perform random sampling:

permutation = list(np.random.permutation(m))  #m is the number of samples
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((1,m))





[Python Cookbook] Numpy: Multiple Ways to Create an Array的更多相关文章

  1. 「Python」Numpy equivalent of MATLAB's cell array

    转自Stackoverflow.备忘用. Question I want to create a MATLAB-like cell array in Numpy. How can I accompli ...

  2. [Python Cookbook] Numpy Array Slicing and Indexing

    1-D Array Indexing Use bracket notation [ ] to get the value at a specific index. Remember that inde ...

  3. [Python Cookbook] Numpy: Iterating Over Arrays

    1. Using for-loop Iterate along row axis: import numpy as np x=np.array([[1,2,3],[4,5,6]]) for i in ...

  4. [Python Cookbook] Numpy Array Joint Methods: Append, Extend & Concatenate

    数组拼接方法一 思路:首先将数组转成列表,然后利用列表的拼接函数append().extend()等进行拼接处理,最后将列表转成数组. 示例1: import numpy as np a=np.arr ...

  5. [Python Cookbook] Numpy: How to Apply a Function to 1D Slices along the Given Axis

    Here is a function in Numpy module which could apply a function to 1D slices along the Given Axis. I ...

  6. [Python Cookbook] Pandas: 3 Ways to define a DataFrame

    Using Series (Row-Wise) import pandas as pd purchase_1 = pd.Series({'Name': 'Chris', 'Item Purchased ...

  7. [Python Cookbook] Numpy Array Manipulation

    1. Reshape: The np.reshape() method will give a new shape to an array without changing its data. Not ...

  8. [转]python与numpy基础

    来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb ...

  9. 【Python】numpy 数组拼接、分割

    摘自https://docs.scipy.org 1.The Basics 1.1 numpy 数组基础 NumPy’s array class is called ndarray. ndarray. ...

随机推荐

  1. DFS:Prime Ring Problem(素数环)

    解体心得: 1.一个回溯法,可以参考八皇后问题. 2.题目要求按照字典序输出,其实在按照回溯法得到的答案是很正常的字典序.不用去特意排序. 3.输出有个坑,就是在输出一串的最后不能有空格,不然要PE, ...

  2. 《鸟哥的Linux私房菜》学习笔记(0)——磁盘与文件系统管理

    一.Linux的登陆流程 login: 用户名:每个用户名都有一个用户ID(用户标识符),计算机处理的就是用户ID(数字)而不是用户名(字符),. 认证机制:Authentication,比如密码或者 ...

  3. logback mybatis 打印sql语句

    logbac.xml 文件的基础配置参考的园友的 http://www.cnblogs.com/yuanermen/archive/2012/02/13/2349609.html 然后hibernat ...

  4. cf982d Shark

    ref #include <algorithm> #include <iostream> #include <cstdio> #include <map> ...

  5. 微服务化的不同阶段 Kubernetes 的不同玩法

    欢迎访问网易云社区,了解更多网易技术产品运营经验. 作为容器集群管理技术竞争的大赢家,Kubernetes已经和微服务紧密联系,采用Kubernetes的企业往往都开始了微服务架构的探索.然而不同企业 ...

  6. Python框架之Django学习笔记(十二)

    Django站点管理 十一转眼结束,说好的充电没能顺利开展,反而悠闲的看了电视剧以及去影院看了新上映的<心花路放>.<亲爱的>以及<黄金时代>,说好的劳逸结合现在回 ...

  7. leetcode 【 Best Time to Buy and Sell Stock II 】python 实现

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

  8. 安恒杯月赛 babypass getshell不用英文字母和数字

    BABYBYPASS 先贴代码: ①限制字符长度35个 ②不能使用英文字母和数字和 _ $ 最后提示有个getFlag()函数,从这个函数入手. 我们的第一思路是直接eval执行getFlag函数,但 ...

  9. 一些echarts的基本图形

    先拿一个图形渲染过程举例 引用处 <bar ref="ARPUChart" v-if="ARPUChart" style="width:500p ...

  10. [Gym101982M][思维好题][凸壳]Mobilization

    [gym101982M][思维好题][凸壳]Mobilization 题目链接 20182019-acmicpc-pacific-northwest-regional-contest-div-1-en ...