多项式相乘快速算法原理及相应C代码实现---用到fft
最近认真研究了一下算法导论里面的多项式乘法的快速计算问题,主要是用到了FFT,自己也实现了一下,总结如下。
1.多项式乘法
两个多项式相乘即为多项式乘法,例如:3*x^7+4*x^5+1*x^2+5与8*x^6+7*x^4+6*x^3+9两个式子相乘,会得到一个最高次数项为13的多项式。一般来说,普通的计算方法是:把A多项式中的每一项与B中多项式中的每一项相乘,得到n个多项式,再把每个多项式相加到一起,得到最终的结果,不妨假设A,B的最高次项都为n-1,长度都为n,那么计算最终的结果需要o(n^2)时间复杂度。而使用快速傅里叶变换(FFT),则可以将时间复杂度降低到o(nlog n)。这是因为,对一个复数序列做正/反快速傅里叶变换的时间复杂度都是o(nlog n),而变换后的序列逐项相乘即为原序列做多项式乘法的结果(多项式乘法相当于卷积)。所以,FFT可以降低多项式相乘运算的时间复杂度,具体的解释和证明在《算法导论》或者其他任何一本相关的算法书中都有详细描述,在此不再赘述。另外,需要注意的是,一些其他的运算也可以转化成多项式乘法,进而利用FFT来加快运算。例如:1.数字乘法运算,和多项式乘法类似,A*B的操作就是用A每一位上的数字乘以B每一位上的数字。尤其是在大数乘法中,FFT可以大幅度加快运算。2.给定A到B的不同长度路径详细数据,B到C的不同路径长度详细数据,求A到C不同长度路径的数量。可以把A到B和B到C不同长度的路径看成不同次数的项,例如:A到B有3条长度为4,2条长度为5的路径,B到C有1条长度为2,4条长度为3的路径,那么A到C不同长度路径的数量等于(3*x^4+2*x^5)*(4*x^3+1*x^2)得到的各项的系数,转化成多项式相乘问题之后,就可以利用FFT来加快运算速度了。
2.FFT
大多数人应该是只需要会用FFT即可,但是这个算法比较基础,因此我自己编程实现了一下,总的代码只有150行左右,其实不算长,当然,对输入序列长度不是2的整数次幂这种情况我没有相应的预处理,算是偷懒了。其实只要对长度取一下对数即可,例如:输入长度如果是37,首先把37*2,拓展成74(这个是FFT必须的),然后对74取log2上取整即可,得到27=128,因此在74后面再添加54个0。
另外,需要注意的一点是,reverse函数在FFT和IFFT中是必须的,不过鉴于多项式乘法需要成对进行FFT和IFFT,所以在做多项式乘法的时候,reverse应该是可以省略的(当然,这个函数的耗时很小)。w的值应该提前计算出来,这样在FFT和IFFT中蝶形计算每一项的时候,就不用重复计算w了,可以节省很多时间。
具体FFT的原理和解释,可以查维基、信息论、数字信号处理、随机过程等任一领域的教科书。
3.代码
程序主要包括FFT,IFFT函数,以及一些复数运算
3.1复数的定义和相关运算定义
//复数
struct Complex{
double real;
double image;
};
Complex a1[MAX_SIZE],a2[MAX_SIZE],result[MAX_SIZE],w[MAX_SIZE];
//复数相乘计算
Complex operator*(Complex a,Complex b){
Complex r;
r.real=a.real*b.real-a.image*b.image;
r.image=a.real*b.image+a.image*b.real;
return r;
}
//复数相加计算
Complex operator+(Complex a,Complex b){
Complex r;
r.real=a.real+b.real;
r.image=a.image+b.image;
return r;
}
//复数相减计算
Complex operator-(Complex a,Complex b){
Complex r;
r.real=a.real-b.real;
r.image=a.image-b.image;
return r;
}
//复数除法计算
Complex operator/(Complex a,double b){
Complex r;
r.real=a.real/b;
r.image=a.image/b;
return r;
}
//复数虚部反计算
Complex operator~(Complex a){
Complex r;
r.real=a.real;
r.image=0-a.image;
return r;
}
3.2FFT和IFFT函数及相关函数
其实FFT和IFFT的原理一样,只是IFFT多了一个除法步骤,也可以把两个合并成一个函数。Reverse用于重新排列输入数组的元素下标,例如输入数组长度为8,则0,1,2,3,4,5,6,7下标的元素经过重新排列后变为0,4,2,6,1,5,3,7下标的元素。Compute_W用于预先计算FFT中需要的w值。
//重新排列方法2,效率较高
void Reverse(int* id,int size,int m){
for(int i=0;i<size;i++){
for(int j=0;j<(m+1)/2;j++){
int v1=(1<<(j)&i)<<(m-2*j-1);
int v2=(1<<(m-j-1)&i)>>(m-2*j-1);
id[i]|=(v1|v2);
}
}
};
//重新排列方法1,该方法是用pow函数效率比较低
void Reverse(int* id,int size,int m){
for(int i=0;i<size;i++){
for(int j=0;j<m;j++){
int exp=(i>>j)&1;
id[i]+=exp*(int)pow((double)2,(double)(m-j-1));
}
}
};
//计算并存储需要乘的w值
void Compute_W(Complex w[],int size){
for(int i=0;i<size/2;i++){
w[i].real=cos(2*PI*i/size);
w[i].image=sin(2*PI*i/size);
w[i+size/2].real=0-w[i].real;
w[i+size/2].image=0-w[i].image;
}
};
//快速傅里叶
void FFT(Complex in[],int size){
int* id=new int[size];
memset(id,0,sizeof(int)*size);
int m=log((double)size)/log((double)2);
Reverse(id,size,m); //将输入重新排列,符合输出
Complex *resort= new Complex[size];
memset(resort,0,sizeof(Complex)*size);
int i,j,k,s;
for(i=0;i<size;i++)
resort[i]=in[id[i]];
for(i=1;i<=m;i++){
s=(int)pow((double)2,(double)i);
for(j=0;j<size/s;j++){
for(k=j*s;k<j*s+s/2;k++){
Complex k1= resort[k]+w[size/s*(k-j*s)]*resort[k+s/2];
resort[k+s/2]=resort[k]-w[size/s*(k-j*s)]*resort[k+s/2];
resort[k]=k1;
}
}
}
for(i=0;i<size;i++)
in[i]=resort[i];
delete[] id;
delete[] resort;
};
//快速逆傅里叶
void IFFT(Complex in[],int size){
int* id=new int[size];
memset(id,0,sizeof(int)*size);
int m=log((double)size)/log((double)2);
Reverse(id,size,m); //将输入重新排列,符合输出
Complex *resort= new Complex[size];
memset(resort,0,sizeof(Complex)*size);
int i,j,k,s;
for(i=0;i<size;i++)
resort[i]=in[id[i]];
for(i=1;i<=m;i++){
s=(int)pow((double)2,(double)i);
for(j=0;j<size/s;j++){
for(k=j*s;k<j*s+s/2;k++){
Complex k1=(resort[k]+(~w[size/s*(k-j*s)])*resort[k+s/2]);
resort[k+s/2]=(resort[k]-(~w[size/s*(k-j*s)])*resort[k+s/2]);
resort[k]=k1;
}
}
}
for(i=0;i<size;i++)
in[i]=resort[i]/size;
delete[] id;
delete[] resort;
};
3.3主函数
输入两个多项式的系数(长度必须都是2的整数次幂),输出两个多项式相乘的结果
int main(){
//输入两个多项式数列
int size,size1,size2,i;
memset(a1,0,sizeof(a1));
memset(a2,0,sizeof(a2));
memset(w,0,sizeof(w));
memset(result,0,sizeof(result));
scanf("%d%d",&size1,&size2);
for(i=0;i<size1;i++)
scanf("%lf",&a1[i].real);
for(i=0;i<size2;i++)
scanf("%lf",&a2[i].real);
size=size1>size2?size1*2:size2*2;
Compute_W(w,size);
FFT(a1,size);
FFT(a2,size);
for(i=0;i<size;i++)
result[i]=a1[i]*a2[i];
IFFT(result,size);
for(i=0;i<size1+size2-1;i++)
printf("%.2lf ",result[i].real);
printf("\n");
return 0;
}
下面是完整的代码
多项式相乘快速算法原理及相应C代码实现---用到fft的更多相关文章
- 最全排序算法原理解析、java代码实现以及总结归纳
算法分类 十种常见排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序. 线性时间非比较类排序:不通过 ...
- Kd-Tree算法原理和开源实现代码
本文介绍一种用于高维空间中的高速近期邻和近似近期邻查找技术--Kd-Tree(Kd树). Kd-Tree,即K-dimensional tree,是一种高维索引树形数据结构,经常使用于在大规模的高维数 ...
- MinFilter(MaxFilter)快速算法C++实现
目录 1.算法简述 1.1.MinFilter(MaxFilter) 算法简述 1.2.MinFilter(MaxFilter) 快速算法简述 2.实现代码 2.1.MinFilterOneRow 单 ...
- SSE图像算法优化系列三十:GIMP中的Noise Reduction算法原理及快速实现。
GIMP源代码链接:https://gitlab.gnome.org/GNOME/gimp/-/archive/master/gimp-master.zip GEGL相关代码链接:https://gi ...
- (转)RSA算法原理
RSA算法原理(二) 作者: 阮一峰 日期: 2013年7月 4日 上一次,我介绍了一些数论知识. 有了这些知识,我们就可以看懂RSA算法.这是目前地球上最重要的加密算法. 六.密钥生成的步骤 我 ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
- GBDT算法原理深入解析
GBDT算法原理深入解析 标签: 机器学习 集成学习 GBM GBDT XGBoost 梯度提升(Gradient boosting)是一种用于回归.分类和排序任务的机器学习技术,属于Boosting ...
- kmeans算法原理以及实践操作(多种k值确定以及如何选取初始点方法)
kmeans一般在数据分析前期使用,选取适当的k,将数据聚类后,然后研究不同聚类下数据的特点. 算法原理: (1) 随机选取k个中心点: (2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为 ...
- OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波
http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...
随机推荐
- 使用electron将单页面vue webapp 打包成 PC端应用
在看张鑫旭博客得时候看到了electron这个东西,来了兴趣,就按照上面写的将已经做好得vue项目拿来试了试,出乎意料得顺利 electron简单说下electron,就是把 chrome内核和你的项 ...
- C# IEnumerable to List 的转换
一.使用Linq using System.Linq; Example: IEnumerable<, ); List<int> asList = enumerable.ToList( ...
- uva 11468 AC自动机+概率DP
#include<cstdio> #include<cstring> #include<queue> #include<cstdio> #include ...
- Android 动态隐藏显示导航栏,状态栏
Talk is cheap, show me the code. --Linus Torvalds Okay, here: 一.导航栏: [java] view plain copy private ...
- Network | Public-key cryptography
公开密钥加密public-key cryptography,也称为非对称(密钥)加密. 非对称密钥,是指一对加密密钥与解密密钥,这两个密钥是数学相关,用某用户密钥加密后所得的信息,只能用该用户的解密密 ...
- 嗅探X-Windows服务按键工具xspy
嗅探X-Windows服务按键工具xspy X-Windows完整名字是X Windows图形用户接口.它是一种计算机软件系统和网络协议.它为联网计算机提供了一个基础的图形用户界面(GUI)和丰富 ...
- 某考试 T3 bitboard
bitboardDiscription 天才发明家小K 制造了一块比特板.板子上有2^n个比特元,编号为0 ∼ 2^n−1.每个比特元
- 【面试】最容易被问到的N种排序算法!
面试官:小明,是吧?你都知道哪些排序算法,哪几种是稳定排序? 小明:这个我有总结! 关于排序稳定性的定义 通俗地讲就是能保证排序前两个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同. ...
- XSY1659 [HNOI2012]永无乡
题面 Description 永无乡包含 n 座岛,编号从 1 到 n. 每座岛都有自己的独一无二的重要度,按照重要度可以将这n座岛排名,名次用 1到n来表示.某些岛之间由巨大的桥连接,通过桥可以从一 ...
- VS2010 + WinDDK 搭建驱动开发环境(转)
因工作需要,需要研究一下Windows驱动开发.我们知道,编译驱动程序主要是通过两种方案:第一种是通过WinDDK提供的build命令+source文件进行编译:另外一种是通过VC的IDE进行编译. ...