地址

n个数,可进行把一个数减小的操作,代价为减小的值。现求使数列任意一个数都存在至少k-1个数和他相同,问操作的最小代价。


可以先考虑最小的数,由于只能减,所以必须得至少k-1个数减为最小数,贪心策略:从小到大从最小数开始的后面至少k-1个数必须减为他自己这一块代价才最小。很好想,如果里面有一个不选,那必须有一个更大的数下降,并且不选的这个数在之后也使后面另一块的数减的更多,所以总是把连续的至少k个数减为开头最小的那个数。那就是数列上划分块的dp,$f[i]$是到$i$时最小代价。

$f[i]=min \{ f[j]+sum[i]-sum[j]-(i-j)*a[j+1] \} $             $  0<=j<=i-k且j∉[1,k-1]$

然后拆开就是一个常规的斜率优化了。注意一下开头k-1个是不能作为决策点的(因为无解),不要进队。0是可以进队的。

没了。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+c-'',c=getchar();return f?x=-x:x;
}
const int N=+;
ll f[N],sum[N];
int a[N],q[N],T,n,k,l,r;
inline ll x(int j){return (ll)a[j+];}
inline ll y(int j){return f[j]+j*1ll*a[j+]-sum[j];} int main(){//freopen("test.in","r",stdin);//freopen("tmp.out","w",stdout);
read(T);while(T--){
read(n),read(k);l=,r=;
for(register int i=;i<=n;++i)sum[i]=read(a[i])+sum[i-];
for(register int i=k;i<=n;++i){
if(i==k||i>=(k<<)){
while(l<r&&(y(i-k)-y(q[r]))*(x(q[r])-x(q[r-]))<=(y(q[r])-y(q[r-]))*(x(i-k)-x(q[r])))--r;
q[++r]=i-k;
}
while(l<r&&y(q[l+])-y(q[l])<=1ll*i*(x(q[l+])-x(q[l])))++l;
f[i]=f[q[l]]+sum[i]-sum[q[l]]-(i-q[l])*1ll*a[q[l]+];
}
printf("%lld\n",f[n]);
}
return ;
}

poj3709 K-Anonymous Sequence[贪心+斜率优化dp]的更多相关文章

  1. bzoj 1492: [NOI2007]货币兑换Cash【贪心+斜率优化dp+cdq】

    参考:http://www.cnblogs.com/lidaxin/p/5240220.html 虽然splay会方便很多,但是懒得写,于是写了cdq 首先要想到贪心的思路,因为如果在某天买入是能得到 ...

  2. POJ 3709 K-Anonymous Sequence(斜率优化DP)

    [题目链接] http://poj.org/problem?id=3709 [题目大意] 给出一个长度为n个非严格单调递增数列,每次操作可以使得其中任意一项减一, 问现在使得数列中每项数相同的数的数量 ...

  3. 『土地征用 Land Acquisition 斜率优化DP』

    斜率优化DP的综合运用,对斜率优化的新理解. 详细介绍见『玩具装箱TOY 斜率优化DP』 土地征用 Land Acquisition(USACO08MAR) Description Farmer Jo ...

  4. 【uoj#244】[UER #7]短路 CDQ分治+斜率优化dp

    题目描述 给出 $(2n+1)\times (2n+1)$ 个点,点 $(i,j)$ 的权值为 $a[max(|i-n-1|,|j-n-1|)]$ ,找一条从 $(1,1)$ 走到 $(2n+1,2n ...

  5. BZOJ1492:[NOI2007]货币兑换 (CDQ分治+斜率优化DP | splay动态维护凸包)

    BZOJ1492:[NOI2007]货币兑换 题目传送门 [问题描述] 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和B纪念券(以下简称B券).每个持有金券的 ...

  6. CF-311B Cats Transport(斜率优化DP)

    题目链接 题目描述 小S是农场主,他养了 \(M\)只猫,雇了 \(P\) 位饲养员. 农场中有一条笔直的路,路边有 \(N\) 座山,从 \(1\) 到 \(N\)编号. 第 \(i\) 座山与第 ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  8. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  9. HDU2829 Lawrence(斜率优化dp)

    学了模板题之后上网搜下斜率优化dp的题目,然后就看到这道题,知道是斜率dp之后有思路就可以自己做不出来,要是不事先知道的话那就说不定了. 题意:给你n个数,一开始n个数相邻的数之间是被东西连着的,对于 ...

随机推荐

  1. jQuery的Pagenation分页插件。

    插件简介 此jQuery插件为Ajax分页插件,一次性加载,故分页切换时无刷新与延迟,如果数据量较大不建议用此方法,因为加载会比较慢. 原插件CSS不太合理,使用浮动,故无法方便实现左右方向的定位,且 ...

  2. java中BigDecimal的学习

    干着java的活,但是看的都是一些偏底层的东西(或者我根本就没有看),有点荒废了java的学习. 最近一直在用到一个类是BigDecimal,但都是模棱两可地在那儿用,并没有深入研究这个类的细节,感觉 ...

  3. Mysql 索引增加与删除

    [1]索引 索引,通俗理解,即目录. 之前说过,计算机是对现实世界的模拟.目录应用在数据库领域,即所谓的索引. 目录的作用显而易见,所以建立索引可以大大提高检索的速度. 但是,会降低更新表的速度,如对 ...

  4. mongodb 配置单实例与双实例

    环境: centos6.5 192.168.16.70 配置单实例mongodb:[root@www soft]# tar xf mongodb-linux-x86_64-rhel62-3.2.7.t ...

  5. windowsphone8.1学习笔记之应用数据(一)

    数据存储分为两种:云存储和应用数据(即本地存储),wp中的应用数据分为两种,一种是应用设置:一种是应用文件.wp的数据相关都是通过ApplicationData来实现,一个程序只有数据存储区. 先说应 ...

  6. Swift 学习笔记 (解决Swift闭包中循环引用的三种方法)

    话不多说 直接上代码 class SmartAirConditioner { var temperature:Int = //类引用了函数 var temperatureChange:((Int)-& ...

  7. 我的Android进阶之旅------>Android如何通过自定义SeekBar来实现视频播放进度条

    首先来看一下效果图,如下所示: 其中进度条如下: 接下来说一说我的思路,上面的进度拖动条有自定义的Thumb,在Thumb正上方有一个PopupWindow窗口,窗口里面显示当前的播放时间.在Seek ...

  8. hdoj 1116 Play on Words 【并查集】+【欧拉路】

    Play on Words Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  9. http://blog.csdn.net/wh211212/article/details/53005321

    http://blog.csdn.net/wh211212/article/details/53005321

  10. Redis——慢查询分析

    核心知识点: 1.什么是慢查询? 2.客户端执行一条命令的步骤? 3.阈值和慢查询日志的设置? 4.慢查询日志的操作命令:slowlog get.slowlog len.slowlog reset. ...