SVM核函数的选择对于其性能的表现有至关重要的作用,尤其是针对那些线性不可分的数据,因此核函数的选择在SVM算法中就显得至关重要。对于核技巧我们知道,其目的是希望通过将输入空间内线性不可分的数据映射到一个高纬的特征空间内使得数据在特征空间内是可分的,我们定义这种映射为ϕ(x)ϕ(x) ,那么我们就可以把求解约束最优化问题变为

 
minαs.t.αi≥0,12∑Ni=1∑Nj=1αiαjyiyj(ϕi⋅ϕj)−∑Ni=1αi∑Ni=1αiyi=0i=1,2,...,Nminα12∑i=1N∑j=1Nαiαjyiyj(ϕi⋅ϕj)−∑i=1Nαis.t.∑i=1Nαiyi=0αi≥0,i=1,2,...,N

但是由于从输入空间到特征空间的这种映射会使得维度发生爆炸式的增长,因此上述约束问题中内积ϕi⋅ϕjϕi⋅ϕj

的运算会非常的大以至于无法承受,因此通常我们会构造一个核函数

 
κ(xi,xj)=ϕ(xi)⋅ϕ(xj)κ(xi,xj)=ϕ(xi)⋅ϕ(xj)

从而避免了在特征空间内的运算,只需要在输入空间内就可以进行特征空间的内积运算。通过上面的描述我们知道要想构造核函数κκ

,我们首先要确定输入空间到特征空间的映射,但是如果想要知道输入空间到映射空间的映射,我们需要明确输入空间内数据的分布情况,但大多数情况下,我们并不知道自己所处理的数据的具体分布,故一般很难构造出完全符合输入空间的核函数,因此我们常用如下几种常用的核函数来代替自己构造核函数:

  • 线性核函数

     
    κ(x,xi)=x⋅xiκ(x,xi)=x⋅xi

    线性核,主要用于线性可分的情况,我们可以看到特征空间到输入空间的维度是一样的,其参数少速度快,对于线性可分数据,其分类效果很理想,因此我们通常首先尝试用线性核函数来做分类,看看效果如何,如果不行再换别的

  • 多项式核函数
     
    κ(x,xi)=((x⋅xi)+1)dκ(x,xi)=((x⋅xi)+1)d

    多项式核函数可以实现将低维的输入空间映射到高纬的特征空间,但是多项式核函数的参数多,当多项式的阶数比较高的时候,核矩阵的元素值将趋于无穷大或者无穷小,计算复杂度会大到无法计算。

  • 高斯(RBF)核函数
     
    κ(x,xi)=exp(−||x−xi||2δ2)κ(x,xi)=exp(−||x−xi||2δ2)

    高斯径向基函数是一种局部性强的核函数,其可以将一个样本映射到一个更高维的空间内,该核函数是应用最广的一个,无论大样本还是小样本都有比较好的性能,而且其相对于多项式核函数参数要少,因此大多数情况下在不知道用什么核函数的时候,优先使用高斯核函数。

  • sigmoid核函数
     
    κ(x,xi)=tanh(η<x,xi>+θ)κ(x,xi)=tanh(η<x,xi>+θ)

    采用sigmoid核函数,支持向量机实现的就是一种多层神经网络。

因此,在选用核函数的时候,如果我们对我们的数据有一定的先验知识,就利用先验来选择符合数据分布的核函数;如果不知道的话,通常使用交叉验证的方法,来试用不同的核函数,误差最下的即为效果最好的核函数,或者也可以将多个核函数结合起来,形成混合核函数。在吴恩达的课上,也曾经给出过一系列的选择核函数的方法:

    • 如果特征的数量大到和样本数量差不多,则选用LR或者线性核的SVM;
    • 如果特征的数量小,样本的数量正常,则选用SVM+高斯核函数;
    • 如果特征的数量小,而样本的数量很大,则需要手工添加一些特征从而变成第一种情况。

svm常用核函数的更多相关文章

  1. svm常用核函数介绍

    这里有一篇博文介绍了,每个核函数的用途: https://blog.csdn.net/batuwuhanpei/article/details/52354822 在吴恩达的课上,也曾经给出过一系列的选 ...

  2. 6. 支持向量机(SVM)核函数

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  3. SVM之核函数

    SVM之问题形式化 SVM之对偶问题 >>>SVM之核函数 SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 上一篇SVM之对偶问题中讨论到,SVM最终形式化为以下优化问题 ...

  4. [白话解析] 深入浅出支持向量机(SVM)之核函数

    [白话解析] 深入浅出支持向量机(SVM)之核函数 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解支持向量机中的核函数概念,并且给大家虚构了一个水浒传的例子来做进一步的通俗 ...

  5. 机器学习——支持向量机(SVM)之核函数(kernel)

    对于线性不可分的数据集,可以利用核函数(kernel)将数据转换成易于分类器理解的形式. 如下图,如果在x轴和y轴构成的坐标系中插入直线进行分类的话, 不能得到理想的结果,或许我们可以对圆中的数据进行 ...

  6. 机器学习:SVM(核函数、高斯核函数RBF)

    一.核函数(Kernel Function) 1)格式 K(x, y):表示样本 x 和 y,添加多项式特征得到新的样本 x'.y',K(x, y) 就是返回新的样本经过计算得到的值: 在 SVM 类 ...

  7. 详解SVM模型——核函数是怎么回事

    大家好,欢迎大家阅读周二机器学习专题,今天的这篇文章依然会讲SVM模型. 也许大家可能已经看腻了SVM模型了,觉得我是不是写不出新花样来,翻来覆去地炒冷饭.实际上也的确没什么新花样了,不出意外的话这是 ...

  8. 支持向量机 (二): 软间隔 svm 与 核函数

    软间隔最大化(线性不可分类svm) 上一篇求解出来的间隔被称为 "硬间隔(hard margin)",其可以将所有样本点划分正确且都在间隔边界之外,即所有样本点都满足 \(y_{i ...

  9. SVM算法核函数的选择

    SVM支持向量机,一般用于二分类模型,支持线性可分和非线性划分.SVM中用到的核函数有线性核'linear'.多项式核函数pkf以及高斯核函数rbf. 当训练数据线性可分时,一般用线性核函数,直接实现 ...

随机推荐

  1. linux 命令——17 whereis(转)

    whereis命令只能用于程序名的搜索,而且只搜索二进制文件(参数-b).man说明文件(参数-m)和源代码文件(参数-s).如果省略参数,则返回所有信息. 和 find相比,whereis查找的速度 ...

  2. 使用selenium的方式获取网页中图片的链接和网页的链接,来判断是否是死链(二)

    上一篇使用Java正则表达式来判断和获取图片的链接以及跳转的网址,这篇使用selenium的自带的API(getAttribute)来获取网页中指定的内容 实现内容:获取下面所有图片的链接地址以及跳转 ...

  3. 求和VII

    问题 K: 求和VII 时间限制: 2 Sec  内存限制: 256 MB提交: 422  解决: 53[提交] [状态] [讨论版] [命题人:admin] 题目描述 master对树上的求和非常感 ...

  4. 干净的架构The Clean Architecture_软件架构系列

    本文转载自:https://www.jdon.com/artichect/the-clean-architecture.html ,这个博客站很有历史了,博主经常翻译Github大牛的文章,值得墙裂推 ...

  5. 关于后台获取不到HiddenField值的有关问题

    服务器加载aspx程序时,首先要执行后台cs文件中的page_load等方法中的代码,其它按钮事件等是不执行的,生成页面发送到客户端.客户端执行时会响应js脚本,提交到服务器后除了执行page_loa ...

  6. ES6 Proxy拦截器详解

    Proxy 拦截器 如有错误,麻烦指正,共同学习 Proxy的原意是"拦截",可以理解为对目标对象的访问和操作之前进行一次拦截.提供了这种机制,所以可以对目标对象进行修改和过滤的操 ...

  7. <%%>用法初步认识

    <%%>是用于向客户端插入服务器代码所使用的一种标记 例如为了在HTML页面上展示由服务器提供的当前用户的某条信息或名字等便可使用 前台 <a href="home.asp ...

  8. java util - json转换工具 gson

    需要 gson-2.7.jar 包 package cn.java.gson; import com.google.gson.JsonElement; import com.google.gson.J ...

  9. WIFI共享大师无法开启发射功能

    1.打开服务(ctrl+R)输入services.msc 2.将关于wifi的服务打开 这里有windows移动热点服务和WLAN开头的服务

  10. django之模型层

    1. ORM MVC或者MTV框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人员 ...