题目链接

  这题好喵啊……

  设f[i]是最少用i次才能全关上转移到最少用i-1次才能全关上灯的期望值,那么n个灯里有i个是正确的,剩下的都是不正确的

  因此期望是$f[i]=frac{n}{i}+frac{(n-i)*f[i+1]}{i}$

  然后我们把初始状态最少用多少次才能关掉求出来

  DP一遍,最后统计答案。

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<cstdlib>
#include<vector>
#define maxn 100020
#define mod 100003
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} vector<long long>s[maxn]; long long inv[maxn];
long long q[maxn];
long long f[maxn]; int main(){
long long n=read(),m=read();
inv[]=;
for(long long i=;i<=n;++i) inv[i]=(-mod/i*inv[mod%i]%mod+mod)%mod;
for(long long i=;i<=n;++i) q[i]=read();
for(long long i=;i<=n;++i)
for(long long j=i;j<=n;j+=i) s[j].push_back(i);
long long last=;
for(long long i=n;i>=;--i){
if(q[i]==) continue;
for(long long j=;j<s[i].size();++j) q[s[i][j]]^=;
last++;
}
f[n]=;
for(long long i=n-;i>m;--i) f[i]=(n*inv[i]%mod+((n-i)*f[i+]%mod)*inv[i]%mod)%mod;
for(long long i=;i<=m;++i) f[i]=;
long long ans=;
for(long long i=;i<=last;++i) ans=(ans+f[i])%mod;
for(long long i=;i<=n;++i) ans=(ans*i)%mod;
printf("%d\n",ans);
return ;
}

【Luogu】P3750分手是祝愿(期望DP)的更多相关文章

  1. P3750 [六省联考2017]分手是祝愿 期望DP

    \(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...

  2. bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]

    4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...

  3. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  4. 【BZOJ】4872: [Shoi2017]分手是祝愿 期望DP

    [题意]给定n盏灯的01状态,操作第 i 盏灯会将所有编号为 i 的约数的灯取反.每次随机操作一盏灯直至当前状态能够在k步内全灭为止(然后直接灭),求期望步数.n,k<=10^5. [算法]期望 ...

  5. 【BZOJ4872】【SHOI2017】分手是祝愿 期望DP

    题目大意 有\(n\)盏灯和\(n\)个开关,初始时有的灯是亮的,有的灯是暗的.按下第\(i\)个开关会使第\(j\)盏灯的状态被改变,其中\(j|i\).每次你会随机操作一个开关,直到可以通过不多于 ...

  6. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

  7. 【bzoj4872】[Shoi2017]分手是祝愿 期望dp

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  8. BZOJ 4827 [Shoi2017]分手是祝愿 ——期望DP

    显然,考虑当前状态最少需要几步,直接贪心即可. 显然我们只需要考虑消掉这几个就好了. 然后发现,关系式找出来很简单,是$f(i) f(i+1) f(i-1)$之间的. 但是计算的时候并不好算. 所以把 ...

  9. [六省联考2017]分手是祝愿——期望DP

    原题戳这里 首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\). 然后容(hen)易(nan)发现即使加 ...

  10. luogu P3830 [SHOI2012]随机树 期望 dp

    LINK:随机树 非常经典的期望dp. 考虑第一问:设f[i]表示前i个叶子节点的期望平均深度. 因为期望具有线性性 所以可以由每个叶子节点的期望平均深度得到总体的. \(f[i]=(f[i-1]\c ...

随机推荐

  1. 关于小程序 scroll-view中设置scroll-top无效 和小说图书阅读进度条小案例

    在最近的项目有做到关于小说阅读的进度条功能,其中用到scroll-view和slider组件,发现scroll-view中的scroll-top在设置值后无效,出现这种情况大概是以下几种问题: 1.s ...

  2. Express框架 --router/app.use

    翻看去年自己记录的印象笔记,准备把笔记上的一些内容也同时更新到博客上,方便自己查看. 1.app.use和app.get的区别及解析 app.use(path,callback)中的callback既 ...

  3. Android驱动开发读书笔记六

    第六章 Linux 驱动的工作和访问方式是 Linux 的亮点之一,Linux 系统将每一个驱动都映射成一个文件.这些文件称为设备文件或驱动文件,都保存在/dev目录中,由于大多数Linux驱动都有与 ...

  4. CentOS7 Apache的安装配置

    前些天安装了Nginx,为了好玩我就又安装Apache,Apache的安装还算顺利.在此做一下学习记录和经验分享. 一.安装httpd 1.先查看一下系统有没有已经安装了httpd的,如果啥都没查到, ...

  5. springboot中加入druid对sql进行监控

    springboot作为现在十分流行的框架,简化Spring应用的初始搭建以及开发过程,现在我们就使用springboot来进行简单的web项目搭建并对项目sql进行监控. 项目的搭建就省略了,spr ...

  6. 三步搞定Vmware固定虚拟机的IP

    1.修改vmware的虚拟网络编辑器 按照图中红色方框的方法设置,子网IP可以设置成自己想要的,点击NAT设置,记住网关IP. 2.进入centos虚拟机系统 编辑 vim /etc/sysconfi ...

  7. 07.VUE学习之解决phpstorm不识别ECMASCRIPT6语法的问题

    此时已经识别:

  8. requests.exceptions.SSLError……Max retries exceeded with url错误求助!!!

    import requests head = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) Appl ...

  9. Susan Sontag【苏珊·桑塔格】

    Sunsan Sontag Sunsan Sontag was one of the most noticeable figures in the world of literature. 苏珊·桑塔 ...

  10. Hive UDAF开发详解

    说明 这篇文章是来自Hadoop Hive UDAF Tutorial - Extending Hive with Aggregation Functions:的不严格翻译,因为翻译的文章示例写得比较 ...