一、下一个排列

首先,STL提供了两个用来计算排列组合关系的算法,分别是next_permutation和prev_permutation。

next_permutation(nums.begin(),nums.end());//下一个排列

prev_permutation(nums.begin(),nums.end())//上一个排列

当返回为1时,表示找到了下一全排列;返回0时,表示无下一全排列

1.1下一个排列算法过程

(1)从右到左,找到第一个违反递增趋势的分区数;例如下图的6。

(2)从右到左,找到第一个比分区数大的改变数;例如下图的7。

(3)交换分区数和改变数;例如下图的6和7交换。

(4)颠倒分区数索引的右边所有数字。例如下图的7之后的元素。

1.2 STL源码剖析中的算法过程

(1)首先从最尾端开始往前寻找两个相邻元素,令第一元素为*i,第二元素为*ii,且满足*i<*ii。

(2)找到这样一组相邻元素后,再从最尾端开始往前检验,找出第一个大于*i的元素,令为*j,将i,j元素对调(swap)。

(3)再将ii之后的所有元素颠倒(reverse)排序。

1.3 版本一实现细节(C指针实现)

template<calss BidrectionalIterator>
bool next_permutation(BidrectionalIterator first,BidrectionalIterator last)
{
if(first == lase) return false; /* 空区间 */
BidrectionalIterator i = first;
++i;
if(i == last) return false; /* 只有一个元素 */
    i = last;                    /* i指向尾端 */
--i;
for(;;)
{
BidrectionalIterator ii = i;
--i;
/* 以上锁定一组(两个)相邻元素 */
if(*i < *ii) /* 如果前一个元素小于后一个元素 */
{
BidrectionalIterator j = last; /* 令j指向尾端 */
while(!(*i < *--j)); /* 由尾端往前找,直到遇到比*i大的元素 */
iter_swap(i,j); /* 交换i,j */
reverse(ii,last); /* 将ii之后的元素全部逆序重排 */
return true;
}
if(i == first) /* 进行至最前面了 */
{
reverse(first,last); /* 全部逆序重排 */
return false;
}
}
}

1.4版本二实现细节(纯STL规范)

 template<typename BidiIt>
bool next_permutation(BidiIt first,BidiIt last)
{
const auto rfirst=reverse_iterator<BidiIt>(last);+++
const auto rlast=reverse_iterator<BidiIt>(first); auto pivot=next(rfirst); while( pivot!= rlast && *pivot >= *prev(pivot))
++pivot;//直到找出第一个违反递增趋势的分区数,此时,pivot指向分区数; if(pivot == rlast)
{
reverse(rfirst,rlast);//如果此序列为递减系列,则下一个排序为颠倒整个序列;
return false;
} auto change=find_if(rfirst,rlast,bindlst(less<int>(),*pivot));//从右到左,找到第一个大于分区数的数,并赋给change; swep(*change,*pivot);//交换分区数与改变数; reverse(rfirst,pivot);//将分区数之后的序列颠倒; return true;
}

1.5 前一个排列(prev_permutation)

与next_permutation类似,STL也提供一个版本:

 int prev_permutation(int *begin, int *end)
{
    int *i=begin, *j, *k;
    if (i==end || ++i==end) return ;   // 0 or 1 element, no prev permutation
    for (i=end-; i!=begin;) {
        j = i--;    // find last decreasing pair (i,j)
        if (!(*i > *j)) continue;
        // find last k which less than i,
        for (k=end; !(*i > *(--k)););
        iter_swap(i,k);
        // now the range [j,end) is in ascending order
        reverse(j,end);
        return ;
    }
    // current is in ascending order
    reverse(begin,end);
    return ;
}

二、全排列

1.1 利用next_permutation求全排列

对初始序列依次求下一个排列,直到没有下一个序列为止。

举个实例,假设有序列{0,1,2,3,4},下图便是套用上述演算法则,一步一步获得“下一个”排列组合。图中只框出那符合“一元素为*i,第二元素为*ii,且满足*i<*ii ”的相邻两元素,至于寻找适当的j、对调、逆转等操作并未显示出。

代码如下:

    vector<vector<int>> permute(vector<int>& nums) {
vector<int>temp;
vector<vector<int>>result;
sort(nums.begin(),nums.end());
do
{
temp.clear();
for(int i=;i<nums.size();i++)
temp.push_back(nums[i]);
result.push_back(temp);
}while(next_permutation(nums.begin(),nums.end()));//do while循环最适合,因为先要打印出初始序列
return result;
}

1.2 利用深度优先搜索(DFS)求解,以后待更新。

三、第K个排列

简单的,可以用暴力枚举法,调用k-1次next_permutation()(注意一定是k-1次)

代码如下:

     string getPermutation(int n, int k) {
string str(n,'');
for(int i=;i<n;i++)
str[i]+=i+;
for(int i=;i<k-;i++)
next_permutation(str.begin(),str.end());
return str;
}

排列算法汇总(下一个排列,全排列,第K个排列)的更多相关文章

  1. C++ Primer 学习笔记_41_STL实践与分析(15)--先来看看算法【下一个】

    STL实践与分析 --初窥算法[下] 一.写容器元素的算法 一些算法写入元素值.在使用这些算法写元素时一定要当心.必须.写入输入序列的元素 写入到输入序列的算法本质上是安全的--仅仅会写入与指定输入范 ...

  2. 代码题(45)— 下一个排列、第k个排列

    1.31. 下一个排列 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只 ...

  3. [Swift]LeetCode31. 下一个排列 | Next Permutation

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  4. LeetCode:下一个排列【31】

    LeetCode:下一个排列[31] 题目描述 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排 ...

  5. Java实现 LeetCode 31下一个排列

    31. 下一个排列 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只允许 ...

  6. 【LeetCode每天一题】Next Permutation(下一个排列)

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  7. ACM_下一个排列

    The Next Permutation Time Limit: 2000/1000ms (Java/Others) Problem Description: For this problem, yo ...

  8. 2.1.12 Next Permutation 下一个字典序数组

    对当前排列从后向前扫描,找到一对为升序的相邻元素,记为i和j(i < j).如果不存在这样一对为升序的相邻元素,则所有排列均已找到,算法结束:否则,重新对当前排列从后向前扫描,找到第一个大于i的 ...

  9. 31,Leetcode下一个排列 - C++ 原地算法

    题目描述 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只允许使用额外常 ...

随机推荐

  1. sql server数据类型char和nchar,varchar和nvarchar,text和ntext

    varchar和nvarchar的区别: varchar(n)长度为 n 个字节的可变长度且非 Unicode 的字符数据.n 必须是一个介于 1 和 8,000 之间的数值.存储大小为输入数据的字节 ...

  2. webpack 3 优化

    编译时间太长 项目为多页面应用时,编译的时候每个入口都会读取依赖的路径,所以入口越多,会导致编译越慢 公用库提取 除了公用的框架(如 Vue.React)以外,不同页面所需要的第三方库可能不一样,而且 ...

  3. hibernate丢失更新

    如果多个线程操作基于同一个查询结构对表中的记录进行修改,那么后修改的记录将会覆盖前面修改的记录,前面的修改就丢失掉了,这就叫做更新丢失.Serializable可以防止更新丢失问题的发生.其他的三个隔 ...

  4. hibernate课程 初探单表映射2-3 session简介

    hibernate流程: 1 配置对象Configurateion 读取 hibernate.cfg.xml 2 会话工厂SessionFactory 读取 user.hbm.xml(创建销毁相当耗费 ...

  5. 从零开始的全栈工程师——js篇2.10(对象与构造函数)

    对象与构造函数 一.js数据类型 基本数据类型:string   undefined   null  boolean  number 引用数据类型  Object  array  function 二 ...

  6. COGS 1453. [USACO NOV]空牛栏

    ★★   输入文件:empty.in   输出文件:empty.out   简单对比时间限制:1 s   内存限制:64 MB [题目描述] FJ建的新牛棚里有N(2<=N<=3,000, ...

  7. 8. String to Integer

    Implement atoi to convert a string to an integer. Hint: Carefully consider all possible input cases. ...

  8. Python参数基础

    Python参数基础 位置参数 ​ 通过位置进行匹配,把参数值传递给函数头部的参数名称,顺序从左到右 关键字参数 ​ 调用的时候使用参数的变量名,采用name=value的形式 默认参数 ​ 为没有传 ...

  9. ActiveX插件的Z-Index属性无效问题解决

    在Web开发中我们经常通过z-index设置多个元素之间的层叠关系,这种方式在多数情况下很有效,但是如果遇到有窗体元素时这种方式常常显得无能为力,今天我们就一块看一下如何有效的解决这个问题. 在Web ...

  10. Uploadify 3.2 参数属性、事件、方法函数详解以及配置

    一.属性 属性名称 默认值 说明 auto true 设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传 . buttonClass ” 按钮样式 buttonCursor ‘ ...