def partitionBy(partitioner: Partitioner): RDD[(K, V)]

该函数根据partitioner函数生成新的ShuffleRDD,将原RDD重新分区。

scala> var rdd1 = sc.makeRDD(Array((1,"A"),(2,"B"),(3,"C"),(4,"D")),2)
rdd1: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[23] at makeRDD at :21 scala> rdd1.partitions.size
res20: Int = 2 //查看rdd1中每个分区的元素
scala> rdd1.mapPartitionsWithIndex{
| (partIdx,iter) => {
| var part_map = scala.collection.mutable.Map[String,List[(Int,String)]]()
| while(iter.hasNext){
| var part_name = "part_" + partIdx;
| var elem = iter.next()
| if(part_map.contains(part_name)) {
| var elems = part_map(part_name)
| elems ::= elem
| part_map(part_name) = elems
| } else {
| part_map(part_name) = List[(Int,String)]{elem}
| }
| }
| part_map.iterator
|
| }
| }.collect
res22: Array[(String, List[(Int, String)])] = Array((part_0,List((2,B), (1,A))), (part_1,List((4,D), (3,C))))
//(2,B),(1,A)在part_0中,(4,D),(3,C)在part_1中 //使用partitionBy重分区
scala> var rdd2 = rdd1.partitionBy(new org.apache.spark.HashPartitioner(2))
rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[25] at partitionBy at :23 scala> rdd2.partitions.size
res23: Int = 2 //查看rdd2中每个分区的元素
scala> rdd2.mapPartitionsWithIndex{
| (partIdx,iter) => {
| var part_map = scala.collection.mutable.Map[String,List[(Int,String)]]()
| while(iter.hasNext){
| var part_name = "part_" + partIdx;
| var elem = iter.next()
| if(part_map.contains(part_name)) {
| var elems = part_map(part_name)
| elems ::= elem
| part_map(part_name) = elems
| } else {
| part_map(part_name) = List[(Int,String)]{elem}
| }
| }
| part_map.iterator
| }
| }.collect
res24: Array[(String, List[(Int, String)])] = Array((part_0,List((4,D), (2,B))), (part_1,List((3,C), (1,A))))
//(4,D),(2,B)在part_0中,(3,C),(1,A)在part_1中

参考:http://lxw1234.com/archives/2015/07/356.htm

spark算子:partitionBy对数据进行分区的更多相关文章

  1. Spark算子--partitionBy

    转载请标明出处http://www.cnblogs.com/haozhengfei/p/923b11fce561e82748baa016bcfb8421.html partitionBy--Trans ...

  2. Spark算子使用

    一.spark的算子分类 转换算子和行动算子 转换算子:在使用的时候,spark是不会真正执行,直到需要行动算子之后才会执行.在spark中每一个算子在计算之后就会产生一个新的RDD. 二.在编写sp ...

  3. Spark算子选择策略

    摘要  1.使用reduceByKey/aggregateByKey替代groupByKey 2.使用mapPartitions替代普通map 3.使用foreachPartitions替代forea ...

  4. (转)Spark 算子系列文章

    http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操 ...

  5. Spark算子总结及案例

    spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Tran ...

  6. Spark算子代码实践

    package com.dingxin.datainit import org.apache.log4j.{Level, Logger} import org.apache.spark.sql.Spa ...

  7. spark算子之DataFrame和DataSet

    前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功 ...

  8. Spark算子总结(带案例)

    Spark算子总结(带案例) spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key ...

  9. (二)spark算子 分为3大类

     transgormation的算子对key-value类型的数据有三种: (1)输入 与 输出为一对一关系 mapValue();针对key-value类型的数据并只对其中的value进行操作,不对 ...

随机推荐

  1. 1.使用dom4j解析XML文件

    一.dom4j的简介 dom4j是一个Java的XML API,是jdom的升级品,用来读写XML文件的.dom4j是一个十分优秀的JavaXML API,具有性能优异.功能强大和极其易使用的特点,它 ...

  2. 【HTML】 HTML基础知识 表单

    html 表单 表单的标签是<form>,用于给网站的后台提交数据.提交的数据格式原本是什么样不太清楚,以python的flask框架来看,我从表单中得到的数据是一个字典(flask.re ...

  3. Hie with the Pie

    Hie with the Pie poj-3311 题目大意:n+1个点,伪旅行商问题. 注释:n<=10. 想法:咳咳,第一道状压dp,下面我来介绍一下状压dp. 所谓dp,就是动态性决策规划 ...

  4. Oracle安装11.2.0.4.180116补丁及如何检查数据库安装补丁

    最近做了一个安装11.2.0.4.180116补丁的实验,突然想起之前和同事讨论的一个问题:如何检查数据库安装补丁的版本,之前搜到的是去查dba_registry_history,有的说在操作系统中执 ...

  5. System V IPC 之共享内存

    IPC 是进程间通信(Interprocess Communication)的缩写,通常指允许用户态进程执行系列操作的一组机制: 通过信号量与其他进程进行同步 向其他进程发送消息或者从其他进程接收消息 ...

  6. java设计模式-State(状态)模式

    state定义     不同的状态,不同的行为;或者说,每个状态有着相应的行为.         就像电风扇的开关,一档的上一个是关闭,关闭的上一个是五档,五档的上一个是四档,以此类推,而且五档的下一 ...

  7. 指令-arModal-点击提示框模板

    html 使用<ar-modal></ar-modal>: <ar-modal modal-obj="modalObj" ok="newAl ...

  8. Beta 第一天

    一.今日任务 重新熟悉整体项目 对整个项目在未来的beta冲刺中进程有一个合理的规划 由于我们送出的是一个负责前端的成员,引入的也是一个负责前端工作的女生,(女生做起美工比起男生更加得心应手吧)所以我 ...

  9. Python实现基于协程的异步爬虫

    一.课程介绍 1. 课程来源 本课程核心部分来自<500 lines or less>项目,作者是来自 MongoDB 的工程师 A. Jesse Jiryu Davis 与 Python ...

  10. Android属性动画 nineoldandroids

    各种资源链接 nineoldandroids 任玉刚的五个图片滑动,点击menu http://blog.csdn.net/singwhatiwanna/article/details/1763998 ...