题目大意

  有一个长度为序列 \(a\),其中某些位置的值是 \(-1\)。

  你要把 \(a\) 补成一个排列。

  定义 \(b_i=\min(a_{2i-1},a_{2i})\),求有多少种可能的 \(b\)。

  \(n\leq 300\)

题解

  如果 \(a_{2i-1}\) 和 \(a_{2i}\) 都有值,就把这两个位置扔掉。

  记 \(c_i\) 表示 \(i\) 这个值是否在初始的 \(a\) 中。

  从后往前DP。记 \(f_{i,j,k}\) 表示已经处理完了 \(i\) 后面的数,有多少个 \(j>i,c_j=1\) 的数匹配的是 \(\leq i\) 的数,有多少个 \(j>i,c_j=0\) 的数匹配的是 \(\leq i\) 的数。

  如果 \(c_i=1\) 且往后匹配的是 \(c_j=0\),那么方案数为 \(1\)。(因为 \(\min=i\))

  如果 \(c_i=0\) 且往后匹配的是 \(c_j=0\),那么先暂定方案数为 \(1\)。(因为暂时不能确定 \(i\) 填在哪个位置。)记这种匹配对数为 \(cnt\)。

  如果 \(c_i=0\) 且往后匹配的是 \(c_j=1\),那么方案数为 \(j\)。(因为可以确定 \(i\) 填在哪个位置。)

  最后方案数要乘上 \(cnt!\),因为这些位置的 \(b\) 可以随便交换。

  时间复杂度:\(O(n^3)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<functional>
#include<cmath>
#include<vector>
#include<assert.h>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
using std::vector;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
void open2(const char *s){
#ifdef DEBUG
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const ll p=1000000007;
const int N=310;
void add(ll &a,ll b)
{
a=(a+b)%p;
}
int n;
int a[2*N];
ll f[2*N][N][N];
int b[2*N];
int c[2*N];
int t;
int main()
{
open2("f");
scanf("%d",&n);
for(int i=1;i<=2*n;i++)
scanf("%d",&a[i]);
int cnt=0;
for(int i=1;i<=2*n;i+=2)
if(a[i]!=-1&&a[i+1]!=-1)
b[a[i]]=b[a[i+1]]=2;
else if(a[i]!=-1)
b[a[i]]=1;
else if(a[i+1]!=-1)
b[a[i+1]]=1;
else
cnt++;
for(int i=1;i<=2*n;i++)
if(b[i]==1)
c[++t]=1;
else if(b[i]==0)
c[++t]=2;
f[t][0][0]=1;
for(int i=t;i>=1;i--)
for(int j=0;j<=t&&j<=n;j++)
for(int k=0;k<=t&&k<=n;k++)
if(c[i]==1)
{
add(f[i-1][j+1][k],f[i][j][k]);
if(k)
add(f[i-1][j][k-1],f[i][j][k]);
}
else
{
add(f[i-1][j][k+1],f[i][j][k]);
if(k)
add(f[i-1][j][k-1],f[i][j][k]);
if(j)
add(f[i-1][j-1][k],f[i][j][k]*j);
}
ll ans=f[0][0][0];
for(int i=1;i<=cnt;i++)
ans=ans*i%p;
printf("%lld\n",ans);
return 0;
}

【AGC030F】Permutation and Minimum DP的更多相关文章

  1. 【agc030f】Permutation and Minimum(动态规划)

    [agc030f]Permutation and Minimum(动态规划) 题面 atcoder 给定一个长度为\(2n\)的残缺的排列\(A\),定义\(b_i=min\{A_{2i-1},A_{ ...

  2. 【AGC030F】Permutation and Minimum(DP)

    题目链接 题解 首先可以想到分组后,去掉两边都填了数的组. 然后就会剩下\((-1,-1)\)和\((-1,x)\)或\((x,-1)\)这两种情况 因为是最小值序列的情况数,我们可以考虑从大到小填数 ...

  3. 【BZOJ4712】洪水(动态dp)

    [BZOJ4712]洪水(动态dp) 题面 BZOJ 然而是权限题QwQ,所以粘过来算了. Description 小A走到一个山脚下,准备给自己造一个小屋.这时候,小A的朋友(op,又叫管理员)打开 ...

  4. 【题解】Jury Compromise(链表+DP)

    [题解]Jury Compromise(链表+DP) 传送门 题目大意 给你\(n\le 200\)个元素,一个元素有两个特征值,\(c_i\)和\(d_i\),\(c,d \in [0,20]\), ...

  5. 【题解】Making The Grade(DP+结论)

    [题解]Making The Grade(DP+结论) VJ:Making the Grade HNOI-D2-T3 原题,禁赛三年. 或许是我做过的最简单的DP题了吧(一遍过是什么东西) 之前做过关 ...

  6. 【题解】NOIP2017逛公园(DP)

    [题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n​节点的最短路径,\(dp(i,k)\)表示从\(i\)节点 ...

  7. 【题解】284E. Coin Troubles(dp+图论建模)

    [题解]284E. Coin Troubles(dp+图论建模) 题意就是要你跑一个完全背包,但是要求背包的方案中有个数相对大小的限制 考虑一个\(c_i<c_j\)的限制,就是一个\(c_i\ ...

  8. 【LeetCode】153. Find Minimum in Rotated Sorted Array 解题报告(Python)

    [LeetCode]153. Find Minimum in Rotated Sorted Array 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode. ...

  9. 【LeetCode】154. Find Minimum in Rotated Sorted Array II 解题报告(Python)

    [LeetCode]154. Find Minimum in Rotated Sorted Array II 解题报告(Python) 标签: LeetCode 题目地址:https://leetco ...

随机推荐

  1. 用jQuery实现切换动态图片

    1.实现动态图片的切换只需要改变目标图片的路径

  2. Mysql使用event,类似oracle job

    MySQL从5.1开始支持event功能,类似oracle的job功能.有了这个功能之后我们就可以让MySQL自动的执行数据汇总等功能,不用像以前需要操作的支持了.如linux crontab功能. ...

  3. 【Linux】【MySQL】CentOS7、MySQL8.0.13 骚操作速查笔记——专治各种忘词水土不服

    1.前言 [Linux][MySQL]CentOS7安装最新版MySQL8.0.13(最新版MySQL从安装到运行) 专治各种忘词,各种水土不服. - -,就是一个健忘贵的速查表:(当然不包括SQL的 ...

  4. 从0开始的Python学习015输入与输出

    简介 在之前的编程中,我们的信息打印,数据的展示都是在控制台(命令行)直接输出的,信息都是一次性的没有办法复用和保存以便下次查看,今天我们将学习Python的输入输出,解决以上问题. 复习 得到输入用 ...

  5. python之控制流

    https://www.cnblogs.com/evablogs/p/6691776.html 条件判断 简单if语句 1 2 3 4 5 >>>name='lily' >&g ...

  6. SQL Server数据库漏洞评估了解一下

    SQL Server Management Studio 17.4或更高版本的SSMS中提供了SQL Server漏洞侦测(VA)功能,此功能允许SQL Server扫描您的数据库以查找潜在的安全漏洞 ...

  7. 想知道谁是你的最佳用户?基于Redis实现排行榜周期榜与最近N期榜

    本文由云+社区发表 前言 业务已基于Redis实现了一个高可用的排行榜服务,长期以来相安无事.有一天,产品说:我要一个按周排名的排行榜,以反映本周内用户的活跃情况.于是周榜(按周重置更新的榜单)诞生了 ...

  8. mybaties xml 的头部

    config.xml的头部: <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE config ...

  9. 【夯实shell基础】shell基础面面观

    本文地址 点击关注微信公众号 wenyuqinghuai 分享提纲: 1. shell中的函数 2. shell中的数组 3. shell中的变量 4. shell中的运算符 5. Linux的一些命 ...

  10. ftp配置详解

    FTP配置文件位置/etc/vsftpd.conflisten=NO设置为YES时vsftpd以独立运行方式启动,设置为NO时以xinetd方式启动(xinetd是管理守护进程的,将服务集中管理,可以 ...