题目链接:Tree with Maximum Cost

题意:给定一棵树,树上每个顶点都有属性值ai,树的边权为1,求$\sum\limits_{i = 1}^{n} dist(i, v) \cdot a_i$,$dist(i, v) $为顶点i到顶点v的距离。该顶点v可以任意选择。

题解:O(n^2)的做法:从每个顶点跑一遍DFS,计算贡献值,并更新答案。(超时)

我们可以先计算出从顶点1跑的答案,发现顶点之间贡献的转移为$ans[u]=ans[fa]+(all-sum[u])-sum[u]$。(all为$\sum\limits_{i = 1}^{n} a_i$)

该顶点的上半部分贡献值增加(all-sum[u]),下半部分贡献值减少(sum[u])。

 #include <set>
#include <map>
#include <queue>
#include <deque>
#include <stack>
#include <cmath>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <fstream>
#include <iostream>
#include <algorithm>
using namespace std; #define eps 1e-8
#define pb push_back
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define clr(a,b) memset(a,b,sizeof(a)
#define bugc(_) cerr << (#_) << " = " << (_) << endl
#define FAST_IO ios::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL) const int N=2e5+;
typedef long long ll;
typedef unsigned long long ull;
ll a[N],sum[N],res,cnt,ans[N]; vector <int> E[N]; void dfs(int u,int fa,ll len){
res+=len*a[u];
sum[u]=a[u];
for(int i=;i<E[u].size();i++){
int v=E[u][i];
if(v==fa) continue;
dfs(v,u,len+);
sum[u]+=sum[v];
}
} void DFS(int u,int fa){
if(fa!=) ans[u]=ans[fa]+cnt-*sum[u];
for(int i=;i<E[u].size();i++){
int v=E[u][i];
if(v==fa) continue;
DFS(v,u);
}
} int main(){
FAST_IO;
int n;
cin>>n;
for(int i=;i<=n;i++) cin>>a[i],cnt+=a[i];
for(int i=;i<n;i++){
int u,v;
cin>>u>>v;
E[u].push_back(v);
E[v].push_back(u);
}
dfs(,,);
ans[]=res;
DFS(,);
cout<<*max_element(ans+,ans++n)<<endl;
return ;
}

Codeforces 1092F Tree with Maximum Cost(树形DP)的更多相关文章

  1. Codeforces Round #527 F - Tree with Maximum Cost /// 树形DP

    题目大意: 给定一棵树 每个点都有点权 每条边的长度都为1 树上一点到另一点的距离为最短路经过的边的长度总和 树上一点到另一点的花费为距离乘另一点的点权 选定一点出发 使得其他点到该点的花费总和是最大 ...

  2. CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。

    题目意思: 给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大.输出最大的值. ...

  3. 2018.12.19 codeforces 1092F. Tree with Maximum Cost(换根dp)

    传送门 sbsbsb树形dpdpdp题. 题意简述:给出一棵边权为1的树,允许选任意一个点vvv为根,求∑i=1ndist(i,v)∗ai\sum_{i=1}^ndist(i,v)*a_i∑i=1n​ ...

  4. Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】

    传送门:http://codeforces.com/contest/1092/problem/F F. Tree with Maximum Cost time limit per test 2 sec ...

  5. CF1092 --- Tree with Maximum Cost

    CF1324 --- Maximum White Subtree 题干 You are given a tree consisting exactly of \(n\) vertices. Tree ...

  6. Codeforces 671D. Roads in Yusland(树形DP+线段树)

    调了半天居然还能是线段树写错了,药丸 这题大概是类似一个树形DP的东西.设$dp[i]$为修完i这棵子树的最小代价,假设当前点为$x$,但是转移的时候我们不知道子节点到底有没有一条越过$x$的路.如果 ...

  7. Codeforces 219D - Choosing Capital for Treeland(树形dp)

    http://codeforces.com/problemset/problem/219/D 题意 给一颗树但边是单向边,求至少旋转多少条单向边的方向,可以使得树上有一点可以到达树上任意一点,若有多个 ...

  8. codeforces 633F The Chocolate Spree (树形dp)

    题目链接:http://codeforces.com/problemset/problem/633/F 题解:看起来很像是树形dp其实就是单纯的树上递归,就是挺难想到的. 显然要求最优解肯定是取最大的 ...

  9. codeforces 486 D. Valid Sets(树形dp)

    题目链接:http://codeforces.com/contest/486/problem/D 题意:给出n个点,还有n-1条边的信息,问这些点共能构成几棵满足要求的树,构成树的条件是. 1)首先这 ...

随机推荐

  1. 外观模式 门面模式 Facade 结构型 设计模式(十三)

    外观模式(FACADE) 又称为门面模式   意图 为子系统中的一组接口提供一个一致的界面 Facade模式定义了一个高层接口,这一接口使得这一子系统更加易于使用. 意图解析 随着项目的持续发展,系统 ...

  2. 关于TCP的握手与挥手-----简单解释

    所谓三次握手(Three-Way Handshake)即建立TCP连接,就是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立.在socket编程中,这一过程由客户端执行conn ...

  3. 自己实现的TypeOf函数2

    自己实现的typeOf函数:返回传入参数的类型 主要用于解决,js自带的typeof返回结果不精确:Ext JS中typeOf对字符串对象.元素节点.文本节点.空白文本节点判断并不准确的问题 与上一篇 ...

  4. jsp内置对象-exception对象

    1.概念:当JSP页面发生错误产生异常时,使用隐含对象exception针对该异常做出相应的处理.使用exception对象时,需要在page指令中设定:<%@page isErrorPage= ...

  5. 高通MSM8998 ABL的调试

    高通在MSM8998上引入了UEFI,用来代替LK(Little Kernel).高通UEFI由XBL和ABL两部分组成.XBL负责芯片驱动及充电等核心应用功能.ABL包括芯片无关的应用如fastbo ...

  6. 20年硅谷技术牛人到访DataPipeline谈:技术如何与业务平衡发展

    导读:技术人员的常态是“左手支持业务签单,右手提升系统性能”,却经常陷入技术和业务该如何平衡发展的困惑?今天,且听一位硅谷牛人分享他的平衡之道. 以个人名誉申请31个国内外技术和产品专利,中国最佳CT ...

  7. Linux命令之常用篇

    一.文件和目录 1. cd命令 它用于切换当前目录,它的参数是要切换到的目录的路径,可以是绝对路径,也可以是相对路径. 指令 说明 cd /home 进入‘home’目录 cd .. 返回上一级目录 ...

  8. 实战 EF(LINQ) 如何以子查询的形式来 Join

    如题,大多数网上关于 LINQ Join 的示例都是以 from x in TableA  join ... 这样的形式,这种有好处,也有劣势,就是在比如我们使用的框架如果已经封装了很多方法,比如分页 ...

  9. 2013年山东省赛F题 Mountain Subsequences

    2013年山东省赛F题 Mountain Subsequences先说n^2做法,从第1个,(假设当前是第i个)到第i-1个位置上哪些比第i位的小,那也就意味着a[i]可以接在它后面,f1[i]表示从 ...

  10. EntityFramework 6.x和EntityFramework Core关系映射中导航属性必须是public?

    前言 不知我们是否思考过一个问题,在关系映射中对于导航属性的访问修饰符是否一定必须为public呢?如果从未想过这个问题,那么我们接下来来探讨这个问题. EF 6.x和EF Core 何种情况下必须配 ...