图像风格迁移

最后要生成的图片是怎样的是难以想象的,所以朴素的监督学习方法可能不会生效,

Content Loss

根据输入图片和输出图片的像素差别可以比较损失

\(l_{content} = \frac{1}{2}\sum (C_c-T_c)^2\)

Style Loss

从中间提取多个特征层来衡量损失。

利用\(Gram\) \(Matrix\)(格拉姆矩阵)可以衡量风格的相关性,对于一个实矩阵\(X\),矩阵\(XX^T\)是\(X\)的行向量的格拉姆矩阵

\(l_{style}=\sum wi(Ts-Ss)^2\)

总的损失函数

\(L_{total(S,C,T)}=\alpha l_{content}(C,T)+\beta L_{style}(S,T)\)


代码
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np import torch
import torch.optim as optim
from torchvision import transforms, models vgg = models.vgg19(pretrained=True).features #使用预训练的VGG19,features表示只提取不包括全连接层的部分 for i in vgg.parameters():
i.requires_grad_(False) #不要求训练VGG的参数

定义一个显示图片的函数

def load_img(path, max_size=400,shape=None):
img = Image.open(path).convert('RGB') if(max(img.size)) > max_size: #规定图像的最大尺寸
size = max_size
else:
size = max(img.size) if shape is not None:
size = shape
transform = transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))
])
'''删除alpha通道(jpg), 转为png,补足另一个维度-batch'''
img = transform(img)[:3,:,:].unsqueeze(0)
return img

载入图像

content  = load_img('./images/turtle.jpg')
style = load_img('./images/wave.jpg', shape=content.shape[-2:]) #让两张图尺寸一样 '''转换为plt可以画出来的形式'''
def im_convert(tensor):
img = tensor.clone().detach()
img = img.numpy().squeeze()
img = img.transpose(1,2,0)
img = img * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
img = img.clip(0,1)
return img

使用的图像为(左边为Content Image,右边为Style Image):

定义几个待会要用到的函数

def get_features(img, model, layers=None):
'''获取特征层'''
if layers is None:
layers = {
'0':'conv1_1',
'5':'conv2_1',
'10':'conv3_1',
'19':'conv4_1',
'21':'conv4_2', #content层
'28':'conv5_1'
} features = {}
x = img
for name, layer in model._modules.items():
x = layer(x)
if name in layers:
features[layers[name]] = x return features def gram_matrix(tensor):
'''计算Gram matrix'''
_, d, h, w = tensor.size() #第一个是batch_size tensor = tensor.view(d, h*w) gram = torch.mm(tensor, tensor.t()) return gram content_features = get_features(content, vgg)
style_features = get_features(style, vgg) style_grams = {layer:gram_matrix(style_features[layer]) for layer in style_features} target = content.clone().requires_grad_(True) '''定义不同层的权重'''
style_weights = {
'conv1_1': 1,
'conv2_1': 0.8,
'conv3_1': 0.5,
'conv4_1': 0.3,
'conv5_1': 0.1,
}
'''定义2种损失对应的权重'''
content_weight = 1
style_weight = 1e6

训练过程

show_every = 400
optimizer = optim.Adam([target], lr=0.003)
steps = 2000 for ii in range(steps):
target_features = get_features(target, vgg) content_loss = torch.mean((target_features['conv4_2'] - content_features['conv4_2'])**2)
style_loss = 0
'''加上每一层的gram_matrix矩阵的损失'''
for layer in style_weights:
target_feature = target_features[layer]
target_gram = gram_matrix(target_feature)
_, d, h, w = target_feature.shape
style_gram = style_grams[layer]
layer_style_loss = style_weights[layer] * torch.mean((target_gram - style_gram)**2)
style_loss += layer_style_loss/(d*h*w) #加到总的style_loss里,除以大小 total_loss = content_weight * content_loss + style_weight * style_loss optimizer.zero_grad()
total_loss.backward()
optimizer.step() if ii % show_every == 0 :
print('Total Loss:',total_loss.item())
plt.imshow(im_convert(target))
plt.show()

将输入的图像和最后得到的混合图作比较:

没有达到最好的效果,还有可以优化的空间√

参考:
  1. Image Style Transfer Using Convolutional Neural Networks论文
  2. Udacity——PyTorch Scholarship Challenge

图像风格迁移(Pytorch)的更多相关文章

  1. keras图像风格迁移

    风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致. 1. 使用预训练的VGG19网络提取特征 2. 损失函数之一是"内容损失"(content loss) ...

  2. fast neural style transfer图像风格迁移基于tensorflow实现

    引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...

  3. Distill详述「可微图像参数化」:神经网络可视化和风格迁移利器!

    近日,期刊平台 Distill 发布了谷歌研究人员的一篇文章,介绍一个适用于神经网络可视化和风格迁移的强大工具:可微图像参数化.这篇文章从多个方面介绍了该工具. 图像分类神经网络拥有卓越的图像生成能力 ...

  4. 使用 PyTorch 进行 风格迁移(Neural-Transfer)

    1.简介 本教程主要讲解如何实现由 Leon A. Gatys,Alexander S. Ecker和Matthias Bethge提出的Neural-Style 算法.Neural-Style 或者 ...

  5. Gram格拉姆矩阵在风格迁移中的应用

    Gram定义 n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix) 根据定义可以看到,每个Gram矩阵背后都有一组向量,Gram矩阵就是由这一组向 ...

  6. 『cs231n』通过代码理解风格迁移

    『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...

  7. Keras实现风格迁移

    风格迁移 风格迁移算法经历多次定义和更新,现在应用在许多智能手机APP上. 风格迁移在保留目标图片内容的基础上,将图片风格引用在目标图片上. 风格本质上是指在各种空间尺度上图像中的纹理,颜色和视觉图案 ...

  8. ng-深度学习-课程笔记-14: 人脸识别和风格迁移(Week4)

    1 什么是人脸识别( what is face recognition ) 在相关文献中经常会提到人脸验证(verification)和人脸识别(recognition). verification就 ...

  9. [DeeplearningAI笔记]卷积神经网络4.6-4.10神经网络风格迁移

    4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.6什么是神经网络风格转换neural style transfer 将原图片作为内容图片Cont ...

随机推荐

  1. 【Oracle学习笔记】游标

    1. 分类 常见的游标可分为显示游标.隐式游标.静态游标和动态游标四大类: 1.1 显示游标 显式是相对与隐式cursor而言的,就是有一个明确的声明的cursor.显式游标的声明类似如下: delc ...

  2. es6 字符串的扩展和数值的扩展

    es6字符串的扩展 1. es6新增的一些方法 1.1 includes 判断是否包括在内,返回一个 true or false 1.2 statsWith 判断是否以什么开头,返回一个 true o ...

  3. PyQtdeploy-V2.4 User Guide 中文 (一)

    PyQtdeploy 用户指南 目录 介绍 与V1.0+的差异 作者 证书 安装 部署过程概览 PyQt的演示 构建演示 Android IOS Linux MacOS Windos 构建系统根目录 ...

  4. JavaScript 中最​​重要的保留字

    JavaScript 保留了一些关键字,这些关键字在当前的语言版本中并没有使用,但在以后 JavaScript 扩展中会用到. abstract else instanceof super boole ...

  5. CSS3文字与字体 text-overflow 与 word-wrap

    text-overflow 对象内的文本溢出部分采用省略“...”标记 或者 剪切: text-overflow:elip(超出容器边界的内容剪切掉)  | ellipsis(超出容器边界内容省略标示 ...

  6. VS Code怎样设置成中文

    打开 VS Code Ctrl + Shift +p打开搜索框 搜索框内输入Configure Display Language 回车 修改代码中“locale”后面引号内内容为zh-CH 重新启动V ...

  7. java基础(四):谈谈java中的IO流

    1.字节流 1.1.字节输出流output 1.1.1.数据写入文件中 通过api查找output.找到很多,其中java.io.OutputStream,OutputStream: 输出字节流的超类 ...

  8. ArcPy 重命名拷贝删除图层

    使用Python脚本进行图层的重命名拷贝及删除,并在过程中利用logging进行日志记录. 附上Python代码: # -*- coding: utf-8 -*- # nightroad import ...

  9. window模拟linux环境-cygwin安装

    cygwin是一个在windows平台上运行的unix模拟环境,它对于学习unix/linux操作环境,或者从unix到windows的应用程序移植,非常有用.通过它,你就可以在不安装linux的情况 ...

  10. .Net Core3 新特性/新功能 16条

    .net core 3实现了.net 标准2.1. 1.生成可执行文件 以前版本需要dotnet run运行项目,.net core 3支持直接生成目标平台的可执行文件.比如windows就是exe了 ...