图像风格迁移(Pytorch)
图像风格迁移
最后要生成的图片是怎样的是难以想象的,所以朴素的监督学习方法可能不会生效,
Content Loss
根据输入图片和输出图片的像素差别可以比较损失
\(l_{content} = \frac{1}{2}\sum (C_c-T_c)^2\)
Style Loss
从中间提取多个特征层来衡量损失。
利用\(Gram\) \(Matrix\)(格拉姆矩阵)可以衡量风格的相关性,对于一个实矩阵\(X\),矩阵\(XX^T\)是\(X\)的行向量的格拉姆矩阵
\(l_{style}=\sum wi(Ts-Ss)^2\)
总的损失函数
\(L_{total(S,C,T)}=\alpha l_{content}(C,T)+\beta L_{style}(S,T)\)
代码
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.optim as optim
from torchvision import transforms, models
vgg = models.vgg19(pretrained=True).features #使用预训练的VGG19,features表示只提取不包括全连接层的部分
for i in vgg.parameters():
i.requires_grad_(False) #不要求训练VGG的参数
定义一个显示图片的函数
def load_img(path, max_size=400,shape=None):
img = Image.open(path).convert('RGB')
if(max(img.size)) > max_size: #规定图像的最大尺寸
size = max_size
else:
size = max(img.size)
if shape is not None:
size = shape
transform = transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))
])
'''删除alpha通道(jpg), 转为png,补足另一个维度-batch'''
img = transform(img)[:3,:,:].unsqueeze(0)
return img
载入图像
content = load_img('./images/turtle.jpg')
style = load_img('./images/wave.jpg', shape=content.shape[-2:]) #让两张图尺寸一样
'''转换为plt可以画出来的形式'''
def im_convert(tensor):
img = tensor.clone().detach()
img = img.numpy().squeeze()
img = img.transpose(1,2,0)
img = img * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
img = img.clip(0,1)
return img
使用的图像为(左边为Content Image,右边为Style Image):
定义几个待会要用到的函数
def get_features(img, model, layers=None):
'''获取特征层'''
if layers is None:
layers = {
'0':'conv1_1',
'5':'conv2_1',
'10':'conv3_1',
'19':'conv4_1',
'21':'conv4_2', #content层
'28':'conv5_1'
}
features = {}
x = img
for name, layer in model._modules.items():
x = layer(x)
if name in layers:
features[layers[name]] = x
return features
def gram_matrix(tensor):
'''计算Gram matrix'''
_, d, h, w = tensor.size() #第一个是batch_size
tensor = tensor.view(d, h*w)
gram = torch.mm(tensor, tensor.t())
return gram
content_features = get_features(content, vgg)
style_features = get_features(style, vgg)
style_grams = {layer:gram_matrix(style_features[layer]) for layer in style_features}
target = content.clone().requires_grad_(True)
'''定义不同层的权重'''
style_weights = {
'conv1_1': 1,
'conv2_1': 0.8,
'conv3_1': 0.5,
'conv4_1': 0.3,
'conv5_1': 0.1,
}
'''定义2种损失对应的权重'''
content_weight = 1
style_weight = 1e6
训练过程
show_every = 400
optimizer = optim.Adam([target], lr=0.003)
steps = 2000
for ii in range(steps):
target_features = get_features(target, vgg)
content_loss = torch.mean((target_features['conv4_2'] - content_features['conv4_2'])**2)
style_loss = 0
'''加上每一层的gram_matrix矩阵的损失'''
for layer in style_weights:
target_feature = target_features[layer]
target_gram = gram_matrix(target_feature)
_, d, h, w = target_feature.shape
style_gram = style_grams[layer]
layer_style_loss = style_weights[layer] * torch.mean((target_gram - style_gram)**2)
style_loss += layer_style_loss/(d*h*w) #加到总的style_loss里,除以大小
total_loss = content_weight * content_loss + style_weight * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
if ii % show_every == 0 :
print('Total Loss:',total_loss.item())
plt.imshow(im_convert(target))
plt.show()
将输入的图像和最后得到的混合图作比较:
没有达到最好的效果,还有可以优化的空间√
参考:
- Image Style Transfer Using Convolutional Neural Networks论文
- Udacity——PyTorch Scholarship Challenge
图像风格迁移(Pytorch)的更多相关文章
- keras图像风格迁移
风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致. 1. 使用预训练的VGG19网络提取特征 2. 损失函数之一是"内容损失"(content loss) ...
- fast neural style transfer图像风格迁移基于tensorflow实现
引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...
- Distill详述「可微图像参数化」:神经网络可视化和风格迁移利器!
近日,期刊平台 Distill 发布了谷歌研究人员的一篇文章,介绍一个适用于神经网络可视化和风格迁移的强大工具:可微图像参数化.这篇文章从多个方面介绍了该工具. 图像分类神经网络拥有卓越的图像生成能力 ...
- 使用 PyTorch 进行 风格迁移(Neural-Transfer)
1.简介 本教程主要讲解如何实现由 Leon A. Gatys,Alexander S. Ecker和Matthias Bethge提出的Neural-Style 算法.Neural-Style 或者 ...
- Gram格拉姆矩阵在风格迁移中的应用
Gram定义 n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix) 根据定义可以看到,每个Gram矩阵背后都有一组向量,Gram矩阵就是由这一组向 ...
- 『cs231n』通过代码理解风格迁移
『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...
- Keras实现风格迁移
风格迁移 风格迁移算法经历多次定义和更新,现在应用在许多智能手机APP上. 风格迁移在保留目标图片内容的基础上,将图片风格引用在目标图片上. 风格本质上是指在各种空间尺度上图像中的纹理,颜色和视觉图案 ...
- ng-深度学习-课程笔记-14: 人脸识别和风格迁移(Week4)
1 什么是人脸识别( what is face recognition ) 在相关文献中经常会提到人脸验证(verification)和人脸识别(recognition). verification就 ...
- [DeeplearningAI笔记]卷积神经网络4.6-4.10神经网络风格迁移
4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.6什么是神经网络风格转换neural style transfer 将原图片作为内容图片Cont ...
随机推荐
- 【Oracle学习笔记】游标
1. 分类 常见的游标可分为显示游标.隐式游标.静态游标和动态游标四大类: 1.1 显示游标 显式是相对与隐式cursor而言的,就是有一个明确的声明的cursor.显式游标的声明类似如下: delc ...
- es6 字符串的扩展和数值的扩展
es6字符串的扩展 1. es6新增的一些方法 1.1 includes 判断是否包括在内,返回一个 true or false 1.2 statsWith 判断是否以什么开头,返回一个 true o ...
- PyQtdeploy-V2.4 User Guide 中文 (一)
PyQtdeploy 用户指南 目录 介绍 与V1.0+的差异 作者 证书 安装 部署过程概览 PyQt的演示 构建演示 Android IOS Linux MacOS Windos 构建系统根目录 ...
- JavaScript 中最重要的保留字
JavaScript 保留了一些关键字,这些关键字在当前的语言版本中并没有使用,但在以后 JavaScript 扩展中会用到. abstract else instanceof super boole ...
- CSS3文字与字体 text-overflow 与 word-wrap
text-overflow 对象内的文本溢出部分采用省略“...”标记 或者 剪切: text-overflow:elip(超出容器边界的内容剪切掉) | ellipsis(超出容器边界内容省略标示 ...
- VS Code怎样设置成中文
打开 VS Code Ctrl + Shift +p打开搜索框 搜索框内输入Configure Display Language 回车 修改代码中“locale”后面引号内内容为zh-CH 重新启动V ...
- java基础(四):谈谈java中的IO流
1.字节流 1.1.字节输出流output 1.1.1.数据写入文件中 通过api查找output.找到很多,其中java.io.OutputStream,OutputStream: 输出字节流的超类 ...
- ArcPy 重命名拷贝删除图层
使用Python脚本进行图层的重命名拷贝及删除,并在过程中利用logging进行日志记录. 附上Python代码: # -*- coding: utf-8 -*- # nightroad import ...
- window模拟linux环境-cygwin安装
cygwin是一个在windows平台上运行的unix模拟环境,它对于学习unix/linux操作环境,或者从unix到windows的应用程序移植,非常有用.通过它,你就可以在不安装linux的情况 ...
- .Net Core3 新特性/新功能 16条
.net core 3实现了.net 标准2.1. 1.生成可执行文件 以前版本需要dotnet run运行项目,.net core 3支持直接生成目标平台的可执行文件.比如windows就是exe了 ...