题目大意:n个小于等于m的数,现在你需要在[1,m]中选择若干个数,使得选出的数能组成的所有数正好与n个数相同,给出最少要选多少个数。

题目分析:

结论一:选择的若干个数一定在n个数中。

证明:否则的话不满足“正好”。

结论二:若a,b在由n个数组成的集合中,则a+b(a+b<=m)也在由n个数组成的集合中。

证明:通过归纳法可以证明。

那么我们考虑构造生成函数G(x)=∑ki*xi,其中当由n组成的集合中有数i时ki=1,否则为0。接着将多出的数删除即可。

代码:

#include<bits/stdc++.h>
using namespace std; typedef long long ll; const ll mod = ;
const int gg = ;
const int maxn = ;
int mp[maxn],a[maxn],f[maxn];
int n,m;
int ord[maxn]; int fast_pow(int now,int p){
if(p == ) return ;
if(p == ) return now;
int z = fast_pow(now,p/); z = (1ll*z*z)%mod;
if(p & ){z = (1ll*z*now)%mod;}
return z;
} void fft(int *d,int len,int kind){
for(int i=;i<len;i++) if(ord[i] > i) swap(d[i],d[ord[i]]);
for(int i=;i<len;i<<=){
int wn = fast_pow(gg,(mod-)/(i<<));
if(kind == -) wn = fast_pow(wn,mod-);
for(int j=;j<len;j += (i<<)){
int w = ;
for(int k=;k<i;k++,w=(1ll*w*wn)%mod){
ll x = d[j+k],y = (1ll*w*d[j+k+i])%mod;
d[j+k] = (x+y)%mod; d[j+k+i] = (x-y+mod)%mod;
}
}
}
if(kind == -){
int inv = fast_pow(len,mod-);
for(int i=;i<len;i++) d[i] = (1ll*d[i]*inv)%mod;
}
} void read(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&a[i]),mp[a[i]] = f[a[i]] = ;
} void work(){
int bit = ,len = ;
while(len < m*) bit++,len<<=;
for(int i=;i<len;i++) ord[i] = (ord[i>>]>>) + ((i&)<<bit-);
fft(f,len,);
for(int i=;i<len;i++) f[i] = (1ll*f[i]*f[i])%mod;
fft(f,len,-);
int ans = ;
for(int i=;i<=m;i++){
if(f[i]&&mp[i]) {mp[i] = ;continue;}
if(f[i]){puts("NO");return;}
if(mp[i]) ans++;
}
puts("YES");
printf("%d\n",ans);
for(int i=;i<=m;i++) if(mp[i]) printf("%d ",i);
} int main(){
read();
work();
return ;
}

codeforces 286E Ladies' Shop的更多相关文章

  1. CodeForces 286E Ladies' Shop 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8781889.html 题目传送门 - CodeForces 286E 题意 首先,给你$n$个数(并告诉你$m$ ...

  2. Codeforces 286E - Ladies' Shop(FFT)

    Codeforces 题面传送门 & 洛谷题面传送门 好久没刷过 FFT/NTT 的题了,写篇题解罢( 首先考虑什么样的集合 \(T\) 符合条件.我们考察一个 \(x\in S\),根据题意 ...

  3. codeforces 286 E. Ladies' Shop (FFT)

    E. Ladies' Shop time limit per test 8 seconds memory limit per test 256 megabytes input standard inp ...

  4. codeforces#1154F. Shovels Shop (dp)

    题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...

  5. Codeforces 1154F - Shovels Shop - [DP]

    题目链接:https://codeforces.com/contest/1154/problem/F 题解: 首先,可以确定的是: 1.$(x,y)$ 里 $x>k$ 的都不可能用: 2.肯定买 ...

  6. Codeforces 1154F Shovels Shop

    题目链接:http://codeforces.com/problemset/problem/1154/F 题目大意: 商店有n把铲子,欲购k把,现有m种优惠,每种优惠可使用多次,每种优惠(x, y)表 ...

  7. Codeforces 286E

    #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> # ...

  8. [CF286E] Ladies' shop

    Description 给出 \(n\) 个 \(\leq m\) 且不同的数 \(a_1,\dots,a_n\),现在要求从这 \(n\) 个数中选出最少的数字,满足这 \(n\) 个数字都可以由选 ...

  9. Ladies' Shop

    题意: 有 $n$ 个包,设计最少的物品体积(可重集),使得 1. 对于任意一个总体积不超过给定 $m$ 的物体集合有其体积和 恰好等于一个包的容量. 2.对于每一个包,存在一个物品集合能恰好装满它. ...

随机推荐

  1. java10 - 泛型与枚举

    java10泛型与枚举 泛型和枚举都是JDK1.5版本之后加入的新特性,泛型将程序代码的类型检查提前到了编译期间进行,枚举类型增强了程序代码的健壮性. 1.泛型类 class VariableType ...

  2. RMI远程服务调用

    数据库:info.sql /* Navicat MySQL Data Transfer Source Server : yuanzhen Source Server Version : 50713 S ...

  3. Java集合框架(四)—— Queue、LinkedList、PriorityQueue

    Queue接口 Queue用于模拟了队列这种数据结构,队列通常是指“先进先出”(FIFO)的容器.队列的头部保存在队列中时间最长的元素,队列的尾部保存在队列中时间最短的元素.新元素插入(offer)到 ...

  4. hiboCoder 1041 国庆出游 dfs+思维

    先抽象出一棵以1做为根结点的树.给定了访问序列a[1..m]. 考虑两种特殊情况: 1.访问了某个a[j],但是存在a[i]没有访问且i < j,出现这种情况说明a[j]一定是a[i]的祖先节点 ...

  5. 使用stringstream对象简化类型转换

    < sstream>库定义了三种类:istringstream.ostringstream和stringstream,分别用来进行流的输入.输出和输入输出操作.另外,每个类都有一个对应的宽 ...

  6. Redis笔记4-持久化方案

    一:快照模式 默认redis是会以快照的形式将数据持久化到磁盘的(一个二进制文件,dump.rdb,这个文件名字可以指定),在配置文件中的格式是:save N M表示在N秒之内,redis至少发生M次 ...

  7. mysql数据库 索引 事务和事务回滚

    mysql索引 索引相当于书的目录优点:加快数据的查询速度缺点:占物理存储空间,添加,删除,会减慢写的速度 查看表使用的索引 mysql> show index from 表名\G;(\G分行显 ...

  8. js数据类型的判断方法

    判断js中的数据类型有一下几种方法:typeof.instanceof. constructor. prototype. $.type()/jquery.type(),接下来主要比较一下这几种方法的异 ...

  9. 一个可以自由定制外观、支持拖拽消除的MaterialDesign风格Android BadgeView

    为了尊重作者,先放上链接:https://github.com/qstumn/BadgeView BadgeView 一个可以自由定制外观.支持拖拽消除的MaterialDesign风格Android ...

  10. 【Android测试工具】Android抓包解析全过程

    需求原因 在android开发中,遇到socket编程,无法从log日志中查看到与之通讯的socket发送和返回的数据包是什么,这里介绍一个工具,tcpdump工具和wireshark工具查看抓到的内 ...