Description

Alice 和 Bob 在玩一个游戏。
游戏在一棵有 n 个点的树上进行。最初,每个点上都只有一个数字,那个数字是 123456789123456789。
有时,Alice 会选择一条从 s 到 t 的路径,在这条路径上的每一个点上都添加一个数字。对于路径上的一个点 r,
若 r 与 s 的距离是 dis,那么 Alice 在点 r 上添加的数字是 a×dis+b。有时,Bob 会选择一条从 s 到 t 的路径。
他需要先从这条路径上选择一个点,再从那个点上选择一个数字。
Bob 选择的数字越小越好,但大量的数字让 Bob 眼花缭乱。Bob 需要你帮他找出他能够选择的最小的数字。

Input

第一行两个数字 n、m,表示树的点数和进行的操作数。
接下来 n−1 行,每行三个数字 u、v、w,表示树上有一条连接 u、v 的边,长度是 w。
接下来 m 行。每行第一个数字是 1 或 2。
若第一个数是 1,表示 Alice 进行操作,接下来四个数字 s、t、a、b。
若第一个数是 2,表示 Bob 进行操作,接下来四个数字 s、t。

Output

每当 Bob 进行操作,输出一行一个数,表示他能够选择的最小的数字

Sample Input

3 5
1 2 10
2 3 20
2 1 3
1 2 3 5 6
2 2 3
1 2 3 -5 -6
2 2 3

Sample Output

123456789123456789
6
-106

HINT

n≤100000,m≤100000,∣a∣≤10000,0<=w,|b|<=10^9

对于A*dis+B,将它分成s->lca,lca->t

s->lca:

A*(d[s]-d[x])+B=-A*d[x]+A*d[s]+B

lca->t:

A*(d[s]+d[x]-2*d[lca])+B=A*d[x]+A*d[s]-2*A*d[lca]+B

在一条链上显然d[fa]<d[son],所以相当于把一个一次函数放入几个线段

查询就是求区间线段最小值

然后就是lichao线段树

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long lol;
struct Node
{
int next,to;
lol dis;
}edge[];
struct Line
{
lol k,b;
bool id;
}tree[];
lol ans,d[],val[],inf=;
int num,head[],size[],fa[][],dep[],son[],dfn[],cnt,id[],top[],n,m;
void add(int u,int v,lol w)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
edge[num].dis=w;
}
void dfs1(int x,int pa)
{int i;
size[x]=;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v==pa) continue;
fa[v][]=x;
d[v]=d[x]+edge[i].dis;
dep[v]=dep[x]+;
dfs1(v,x);
size[x]+=size[v];
if (size[v]>size[son[x]]) son[x]=v;
}
}
void dfs2(int x,int pa,int tp)
{int i;
dfn[x]=++cnt;
id[cnt]=x;
top[x]=tp;
if (son[x]) dfs2(son[x],x,tp);
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v==pa||v==son[x]) continue;
dfs2(v,x,v);
}
}
int lca(int x,int y)
{
while (top[x]!=top[y])
{
if (d[top[x]]<d[top[y]]) swap(x,y);
x=fa[top[x]][];
}
if (d[x]<d[y]) return x;
else return y;
}
lol cal(Line a,lol x)
{
return a.k*x+a.b;
}
double cross(Line x,Line y)
{
return (x.b-y.b)/(1.0*(y.k-x.k));
}
void add_min(int rt,int l,int r,Line x)
{
if (!tree[rt].id)
{
tree[rt]=x;
return;
}
lol f1=cal(x,d[id[l]]);lol f2=cal(tree[rt],d[id[l]]);
lol f3=cal(x,d[id[r]]);lol f4=cal(tree[rt],d[id[r]]);
if (f1>=f2&&f3>=f4) return;
else
if (f1<=f2&&f3<=f4)
{tree[rt]=x;}
else
{
double p=cross(tree[rt],x);
int mid=(l+r)/;
if (f1<=f2)
{
if (p<=d[id[mid]]) add_min(rt<<,l,mid,x);
else add_min(rt<<|,mid+,r,tree[rt]),tree[rt]=x;
}
else
{
if (p<=d[id[mid]]) add_min(rt<<,l,mid,tree[rt]),tree[rt]=x;
else add_min(rt<<|,mid+,r,x);
}
}
}
void update(int rt,int l,int r,int L,int R,Line x)
{
val[rt]=min(val[rt],min(cal(x,d[id[L]]),cal(x,d[id[R]])));
if (l==L&&r==R)
{
add_min(rt,l,r,x);
return;
}
int mid=(l+r)/;
if (R<=mid) update(rt<<,l,mid,L,R,x);
else if (L>mid) update(rt<<|,mid+,r,L,R,x);
else
{
update(rt<<,l,mid,L,mid,x);
update(rt<<|,mid+,r,mid+,R,x);
}
}
void query(int rt,int l,int r,int L,int R)
{
if (tree[rt].id)
{
ans=min(ans,min(cal(tree[rt],d[id[L]]),cal(tree[rt],d[id[R]])));
}
if (l==L&&r==R)
{
ans=min(ans,val[rt]);
return;
}
int mid=(l+r)/;
if (R<=mid) query(rt<<,l,mid,L,R);
else if (L>mid) query(rt<<|,mid+,r,L,R);
else
{
query(rt<<,l,mid,L,mid);query(rt<<|,mid+,r,mid+,R);
}
}
void build(int rt,int l,int r)
{
val[rt]=inf;
if (l==r) return;
int mid=(l+r)/;
build(rt*,l,mid);
build(rt*+,mid+,r);
}
int main()
{int i,u,v,j,opt,s,t,x,y;
lol w,A,B;
cin>>n>>m;
for (i=;i<=n-;i++)
{
scanf("%d%d%lld",&u,&v,&w);
add(u,v,w);add(v,u,w);
}
dfs1(,);
dfs2(,,);
for (i=;i<=;i++)
{
for (j=;j<=n;j++)
fa[j][i]=fa[fa[j][i-]][i-];
}
build(,,n);
for (i=;i<=m;i++)
{
scanf("%d",&opt);
if (opt==)
{
scanf("%d%d%lld%lld",&s,&t,&A,&B);
int z=lca(s,t);
x=s;y=t;
while (top[x]!=top[z])
{
update(,,n,dfn[top[x]],dfn[x],(Line){-A,B+A*d[s],});
x=fa[top[x]][];
}
update(,,n,dfn[z],dfn[x],(Line){-A,B+A*d[s],});
while (top[y]!=top[z])
{
update(,,n,dfn[top[y]],dfn[y],(Line){A,B-*A*d[z]+A*d[s],});
y=fa[top[y]][];
}
update(,,n,dfn[z],dfn[y],(Line){A,B-*A*d[z]+A*d[s],});
}
else
{
scanf("%d%d",&s,&t);
int z=lca(s,t);
x=s;y=t;ans=inf;
while (top[x]!=top[z])
{
query(,,n,dfn[top[x]],dfn[x]);
x=fa[top[x]][];
}
query(,,n,dfn[z],dfn[x]);
while (top[y]!=top[z])
{
query(,,n,dfn[top[y]],dfn[y]);
y=fa[top[y]][];
}
query(,,n,dfn[z],dfn[y]);
printf("%lld\n",ans);
}
}
}

[SDOI2016]游戏的更多相关文章

  1. 4515: [Sdoi2016]游戏

    4515: [Sdoi2016]游戏 链接 分析: 树链剖分 + 超哥线段树.注意细节. 代码: #include<cstdio> #include<algorithm> #i ...

  2. 【BZOJ4515】[Sdoi2016]游戏 树链剖分+线段树

    [BZOJ4515][Sdoi2016]游戏 Description Alice 和 Bob 在玩一个游戏. 游戏在一棵有 n 个点的树上进行.最初,每个点上都只有一个数字,那个数字是 1234567 ...

  3. BZOJ4515: [Sdoi2016]游戏

    Description Alice 和 Bob 在玩一个游戏. 游戏在一棵有 n 个点的树上进行.最初,每个点上都只有一个数字,那个数字是 123456789123456789. 有时,Alice 会 ...

  4. bzoj 4515: [Sdoi2016]游戏

    Description Alice 和 Bob 在玩一个游戏. 游戏在一棵有 n 个点的树上进行.最初,每个点上都只有一个数字,那个数字是 123456789123456789. 有时,Alice 会 ...

  5. [bzoj4515][Sdoi2016]游戏-树链剖分+李超线段树

    Brief Description Alice 和 Bob 在玩一个游戏. 游戏在一棵有 n 个点的树上进行.最初,每个点上都只有一个数字,那个数字是 123456789123456789. 有时,A ...

  6. bzoj千题计划276:bzoj4515: [Sdoi2016]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=4515 把lca带进式子,得到新的式子 然后就是 维护树上一次函数取min 一个调了一下午的错误: 当 ...

  7. 【题解】Luogu P4069 [SDOI2016]游戏

    原题传送门 看到这种题,想都不用想,先写一个树链剖分 然后发现修改操作增加的是等差数列,这使我们想到了李超线段树 先进性树剖,然后用李超线段树维护区间最小,这样就做完了(写码很容易出错) 复杂度为\( ...

  8. BZOJ.4515.[SDOI2016]游戏(树链剖分 李超线段树)

    BZOJ 洛谷 每次在路径上加的数是个一次函数,容易看出是树剖+李超线段树维护函数最小值.所以其实依旧是模板题. 横坐标自然是取个确定的距离标准.取每个点到根节点的距离\(dis[i]\)作为\(i\ ...

  9. [SDOI2016]游戏 树剖+李超树

    目录 链接 思路 update 代码 链接 https://www.luogu.org/problemnew/show/P4069 思路 树剖+超哥线段树 我已经自毙了,自闭了!!!! update ...

随机推荐

  1. c++第0次作业

    1.你认为大学的学习生活.同学关系.师生应该是怎样? 随着大学生活的慢慢到来,我开始领悟到大学并不是自由的天堂,相反,我们更加的走进社会这个牢笼.在这个牢笼中有着从前的我们并不需要在意和考虑的规则与问 ...

  2. 【iOS】swift init构造器

    这几天在使用 Swift 重写原来的一个运动社交应用 SportJoin. 为什么要重写呢? 首先因为实在找不到设计师给我作图; 其次, 我也闲不下来, 想找一些项目做, 所以只好将原来的代码重写了. ...

  3. iOS开发之Objective-C与JavaScript的交互

    UIWebView是iOS最常用的SDK之一,它有一个stringByEvaluatingJavaScriptFromString方法可以将javascript嵌入页面中,通过这个方法我们可以在iOS ...

  4. zookeeper安装及环境变量设置

    下载 首先去官网下载(自行选择版本):http://mirror.bit.edu.cn/apache/zookeeper/zookeeper-3.4.11/然后执行tar -zxvf解压 对于后台安装 ...

  5. 分布式系统之消息中间件rabbitmq

    分布式系统之消息中间件rabbitmq 博客分类: 感谢:  一般php 用rabbitmq  java 用activemq  http://spartan1.iteye.com/blog/11802 ...

  6. Mego(08) - 高级建模

    对于模型建立Mego还提供了一些高级主题 数据库函数映射 我们可以将现有的CLR方法映射到指定数据库的标题函数上,如下所示 public class OrderManageEntities : DbC ...

  7. C# 使用 GDI+ 实现添加中心旋转(任意角度)的文字

    这篇文章是 GDI+ 总结系列的第三篇,如果对 GDI+ 的基础使用不熟悉的朋友可以先看第一篇文章<C# 使用 GDI+ 画图>. 需求 需求是要实现给图片添加任意角度旋转的文字,文字的旋 ...

  8. First:安装配置JDK and 部署Tomcat

    (一)准备 百度云地址(win,64Bit): 1.tomcat(7.0):链接:https://pan.baidu.com/s/1f60DOGO5Hnj9bq-987FNrw 密码:6q55 2.j ...

  9. Android:ImageView控件显示图片

    1)android显示图片可以使用imageView来呈现,而且也可以通过ImageButton来实现给button添加图片. 2)在创建一个ImageView后,显示图片绑定元素是:android: ...

  10. 从感知机到 SVM,再到深度学习(三)

        这篇博文详细分析了前馈神经网络的内容,它对应的函数,优化过程等等.     在上一篇博文中已经完整讲述了 SVM 的思想和原理.讲到了想用一个高度非线性的曲线作为拟合曲线.比如这个曲线可以是: ...