Given a graph (V,E) where V is a set of nodes and E is a set of arcs in VxV, and an ordering on the elements in V, then the bandwidth of a node v is defined as the maximum distance in the ordering between v and any node to which it is connected in the graph. The bandwidth of the ordering is then defined as the maximum of the individual bandwidths. For example, consider the following graph:

This can be ordered in many ways, two of which are illustrated below:

For these orderings, the bandwidths of the nodes (in order) are 6, 6, 1, 4, 1, 1, 6, 6 giving an ordering bandwidth of 6, and 5, 3, 1, 4, 3, 5, 1, 4 giving an ordering bandwidth of 5.

Write a program that will find the ordering of a graph that minimises the bandwidth.

Input

Input will consist of a series of graphs. Each graph will appear on a line by itself. The entire file will be terminated by a line consisting of a single #. For each graph, the input will consist of a series of records separated by `;'. Each record will consist of a node name (a single upper case character in the the range `A' to `Z'), followed by a `:' and at least one of its neighbours. The graph will contain no more than 8 nodes.

Output

Output will consist of one line for each graph, listing the ordering of the nodes followed by an arrow (->) and the bandwidth for that ordering. All items must be separated from their neighbours by exactly one space. If more than one ordering produces the same bandwidth, then choose the smallest in lexicographic ordering, that is the one that would appear first in an alphabetic listing.

Sample input

A:FB;B:GC;D:GC;F:AGH;E:HD
#

Sample output

A B C F G D H E -> 3

求出排列好后,相连的两个值之间存在的最大值,然后找出最大值最小的那一组

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int maps[30][30];
int hav[30];
int p[10],a[10];
int ans[10],n,pmax,sum;
int work() //如果相连,求它们之间距离的最大值
{
int tmax = 0;
for(int i=1; i<n; i++)
{
for(int j=i+1; j<n; j++)
{
if(maps[a[i]][a[j]])
{
if(j - i>tmax)
tmax=j-i;
}
}
}
return tmax;
}
void dfs(int cur)
{
int flag;
if(cur==n)
{
sum=work();
if(pmax>sum) //找出最大距离最小的那一组
{
pmax=sum;
memcpy(ans,a,sizeof(a));
}
return ;
}
else
{
for(int i=1; i<n; i++)
{
flag=1;
a[cur]=p[i];
for(int j=1; j<cur; j++)
{
if(a[j]==a[cur])
{
flag=0;
break;
}
}
if(flag)
dfs(cur+1);
}
}
}
int main()
{
char str[100];
char c;
int len,i,pre,now;
while(gets(str)&&strcmp(str,"#"))
{
n=1,pmax = 0x3f3f3f3f;
len=strlen(str);
memset(maps,0,sizeof(maps));
memset(hav,0,sizeof(hav));
memset(p,0,sizeof(p));
for(i=0; i<len; i++)
{
c=str[i];
if(str[i+1]==':')
{
pre=c-'A'+1;
hav[pre]++;
}
else if(c>='A'&&c<='Z')
{
now=c-'A'+1;
hav[now]++;
maps[now][pre]=maps[pre][now]=1;
}
}
for(i=0; i<27; i++)
{
if(hav[i])
p[n++]=i;
}
dfs(1);
for(i=1; i<n; i++)
printf("%c ",ans[i]+'A'-1);
printf("-> %d",pmax);
printf("\n");
}
return 0;
}

  

UVA140 ——bandwidth(搜索)的更多相关文章

  1. uva140 - Bandwidth

    Bandwidth Given a graph (V,E) where V is a set of nodes and E is a set of arcs in VxV, and an orderi ...

  2. UVa140 Bandwidth 小剪枝+双射小技巧+枚举全排列+字符串的小处理

    给出一个图,找出其中的最小带宽的排列.具体要求见传送门:UVa140 这题有些小技巧可以简化代码的编写. 本题的实现参考了刘汝佳老师的源码,的确给了我许多启发,感谢刘老师. 思路: 建立双射关系:从字 ...

  3. Uva140 Bandwidth 全排列+生成测试法+剪枝

    参考过仰望高端玩家的小清新的代码... 思路:1.按字典序对输入的字符串抽取字符,id[字母]=编号,id[编号]=字母,形成双射       2.邻接表用两个vector存储,存储相邻关系     ...

  4. UVa140 Bandwidth 【最优性剪枝】

    题目链接:https://vjudge.net/contest/210334#problem/F  转载于:https://www.cnblogs.com/luruiyuan/p/5847706.ht ...

  5. 递归回溯 UVa140 Bandwidth宽带

    本题题意:寻找一个排列,在此排序中,带宽的长度最小(带宽是指:任意一点v与其距离最远的且与v有边相连的顶点与v的距离的最大值),若有多个,按照字典序输出最小的哪一个. 解题思路: 方法一:由于题目说结 ...

  6. UVA-140 Bandwidth (回溯+剪枝)

    题目大意:求一个使带宽最小的排列和最小带宽.带宽是指一个字母到其相邻字母的距离最大值. 题目分析:在递归生成全排列的过程中剪枝,剪枝方案还是两个.一.当前解不如最优解优时,减去:二.预测的理想解不必最 ...

  7. 7-6 Bandwidth UVA140

    没有清空向量导致debug了好久 这题难以下手  不知道怎么dfs 原来是用排序函数. letter[n]=i; id[i]=n++; 用来储存与设置标记十分巧妙 for(;;) { while(s[ ...

  8. uva 140 bandwidth (好题) ——yhx

     Bandwidth  Given a graph (V,E) where V is a set of nodes and E is a set of arcs in VxV, and an orde ...

  9. UVa OJ 140 - Bandwidth (带宽)

    Time limit: 3.000 seconds限时3.000秒 Problem问题 Given a graph (V,E) where V is a set of nodes and E is a ...

随机推荐

  1. SpringMVC之HandlerMapping的使用

    上篇博客在了解SpringMVC的工作流程时留了一些疑问,今天先学习下HandlerMapping,在HandlerMapping中可以通过HandlerExecutionChain getHandl ...

  2. 09-移动端开发教程-Sass入门

    1. 引言 CSS3之前的CSS都大都是枚举属性样式,而编程语言强大的变量.函数.循环.分支等功能基本都不能在CSS中使用,让CSS的编程黯淡无光,Sass就是一种增强CSS编程的扩展语言(CSS4也 ...

  3. 深入理解PHP之require/include顺序

    深入理解PHP之require/include顺序 作者: Laruence(   ) 本文地址: http://www.laruence.com/2010/05/04/1450.html 转载请注明 ...

  4. JAVA_SE基础——39.继承

    在面向对象程序设计中,可以从已有的类派生出新类. 这称做继承(inheritance). 白话解释: 例子1:继承一般是指晚辈从父辈那里继承财产,也可以说是子女拥有父母给予他们的东西. 例子2:猫和狗 ...

  5. python小练习之二

    title: python小练习之二 tags: 新建,模板,小书匠 grammar_cjkRuby: true --- python小练习之二 需求:实现用户登录,用户名和密码保存到文件里,连续输入 ...

  6. Thinkphp框架部署步骤

    Thinkphp框架部署步骤 thinkphp框架部署起来简单,但是由于步骤较多也容易遗忘: 这是安装了集成环境后的一个www根目录结构: 然后需要在这个目录下面创建一个文件夹做项目:thinkphp ...

  7. Java XML Dom解析工具

    Java XML Dom解析工具 缩进等 transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "no"); ...

  8. python全栈开发-json和pickle模块(数据的序列化)

    一.什么是序列化? 我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flat ...

  9. vuex - 项目结构目录及一些简单配置

    首先先正经的来一段官网的"忠告": vuex需要遵守的规则: 一.应用层级的状态应该集中到单个 store 对象中. 二.提交 mutation 是更改状态的唯一方法,并且这个过程 ...

  10. Mego(04) - Mego入门

    本教程演示创建一个简单的数据库访问及更新数据的示例以便于初步了解下Mego框架的使用. 文中使用Visual Studio 2017版本. 创建Visual Studio项目 创建一个名为 MegoS ...