洛谷P2633 Count on a tree(主席树,倍增LCA)
题目大意
就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线)。
思路分析
第k小。。。。。。又是主席树了。但这次变成树了,无法直接维护前缀和。
又是树上差分的小套路——每一个点到根的前缀和还是很好维护对吧。
询问\(u,v\)的时候,我们可以知道\(size[root,u]\)和\(size[root,v]\)的和。
但我们需要的只是一条路径,\(lca(u,v)\)以上的全不要,\(lca(u,v)\)也只要算一次。
于是用\(size[root,u]+size[root,v]-size[root,lca(u,v)]-size[root,father(lca(u,v))]\),也就是询问的时候四个点一起跳。
求LCA最方便的是倍增法(不会的百度一下),还有每个点对应的线段树从其父亲的线段树继承而来(根节点从\(0\)号空线段树继承而来),这两个操作我们在一次dfs建树时就可以一并处理完了。
话说我好久没打过倍增LCA了,老是写挂。。。。。。
闲话
另外,本蒟蒻听说倍增的二维数组把长度小的那一维度(即表示\(2^j\)的维度)开在前面会跑的快一些。
于是本蒟蒻亲自验证了一下,开在前面1112ms,开在后面992ms(没开O2,开了以后两个差不多)。。。。。。
这又是什么鬼?!
难道有评测机的不稳定因素?(洛谷一直很稳定啊!)
或者是有其他原因?欢迎各位大佬指教。
下面贴代码(开在前面):
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define R register int
#define G c=getchar()
#define in(Z) G;\
while(c<'-')G;\
Z=c&15;G;\
while(c>'-')Z*=10,Z+=c&15,G;
const int N=100009,M=4000009;
int P,he[N],ne[N<<1],to[N<<1],f[18][N],d[N],b[N];
int n,SZ,a[N],g[N],rt[N],lc[M],rc[M],s[M];
void build(R&u,R l,R r){//建初始空线段树
u=++P;
if(l!=r){
R m=(l+r)>>1;
build(lc[u],l,m);
build(rc[u],m+1,r);
}
}
inline void insert(R*u,R v,R k){//更新
R l=1,r=SZ,m;
while(l!=r){
s[*u=++P]=s[v]+1;
m=(l+r)>>1;
if(k<=m)r=m,rc[*u]=rc[v],u=&lc[*u],v=lc[v];
else l=m+1,lc[*u]=lc[v],u=&rc[*u],v=rc[v];
}
s[*u=++P]=s[v]+1;
}
inline int ask(R u,R v,R w,R x,R k){//询问,四个点一起搞
R l=1,r=SZ,m,q;
while(l!=r){
m=(l+r)>>1;
q=s[lc[u]]+s[lc[v]]-s[lc[w]]-s[lc[x]];
if(k<=q)r=m,u=lc[u],v=lc[v],w=lc[w],x=lc[x];
else l=m+1,u=rc[u],v=rc[v],w=rc[w],x=rc[x],k-=q;
}
return g[l];
}
void dfs(R u,R fa){//建好树,顺便预处理LCA
d[u]=d[fa]+1;
f[0][u]=fa;
for(R&i=b[u];f[i+1][u]=f[i][f[i][u]];++i);
insert(&rt[u],rt[fa],lower_bound(g+1,g+SZ+1,a[u])-g);
for(R i=he[u];i;i=ne[i])
if(to[i]!=fa)dfs(to[i],u);
}
inline int getlca(R u,R v){//查LCA
R i;
if(d[u]<d[v])i=u,u=v,v=i;
for(i=b[u];d[u]>d[v]&&i>=0;--i)
if(d[f[i][u]]>=d[v])u=f[i][u];
for(i=b[u];i>=0;--i)
if(f[i][u]!=f[i][v])u=f[i][u],v=f[i][v];
return u==v?u:f[0][u];//这里老是忘记判
}
int main(){
register char c;
R p=1,m,i,u,v,k,lca,lans=0;
in(n);in(m);
for(i=1;i<=n;++i){in(a[i]);}
memcpy(g,a,(n+1)<<2);//搞出来离散化
sort(g+1,g+n+1);
SZ=unique(g+1,g+n+1)-g-1;
build(rt[0],1,SZ);
for(i=1;i<n;++i)
{
in(u);in(v);
to[++p]=v;ne[p]=he[u];he[u]=p;
to[++p]=u;ne[p]=he[v];he[v]=p;//建边
}
dfs(1,0);
while(m--){
in(u);in(v);in(k);
lca=getlca(u^=lans,v);
printf("%d\n",lans=ask(rt[u],rt[v],rt[lca],rt[f[0][lca]],k));
}
return 0;
}
洛谷P2633 Count on a tree(主席树,倍增LCA)的更多相关文章
- 洛谷P2633 Count on a tree(主席树上树)
题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...
- 洛谷 P2633 Count on a tree 主席树
在一棵树上,我们要求点 $(u,v)$ 之间路径的第$k$大数. 对于点 $i$ ,建立 $i$ 到根节点的一棵前缀主席树. 简单容斥后不难得出结果为$sumv[u]+sumv[v]−sumv[l ...
- 洛谷P2633 Count on a tree 主席树
传送门:主席树 解题报告: 传送门! umm这题我还麻油开始做 所以 先瞎扯一波我的想法,如果错了我就当反面教材解释这种典型错误,对了我就不管了QwQ 就直接dfs,在dfs的过程中建树 然后就直接查 ...
- 洛谷 P2633 Count on a tree
P2633 Count on a tree 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中last ...
- 洛谷P2633 Count on a tree(主席树,倍增LCA,树上差分)
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...
- ☆ [洛谷P2633] Count on a tree 「树上主席树」
题目类型:主席树+\(LCA\) 传送门:>Here< 题意:给出一棵树.每个节点有点权.问某一条路径上排名第\(K\)小的点权是多少 解题思路 类似区间第\(K\)小,但放在了树上. 考 ...
- 洛谷P2633 Count on a tree
题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...
- 洛谷 P2633 Count on a tree 题解
题面 对于每个点建立一颗主席树: 然后按照树上差分的思想统计主席树的前缀和: lca+主席树+前向星存表就可以了: #include <bits/stdc++.h> #define inc ...
- P2633 Count on a tree(主席树)
题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...
随机推荐
- 克隆虚拟机以及两台linux机器相互登录:linux学习第四篇
克隆虚拟机 1. 克隆 之后自己命名克隆的虚拟机并自己选择存放位置,完成克隆 2. 克隆虚拟机之后对新的虚拟机修改网络配置,以免冲突(将配置文件里的UUID去掉,并修改IP地址) ...
- [Python Study Notes]列表操作
列表操作 a.切片 >>> names = ["Alex","Tenglan","Eric","Rain&quo ...
- NSData所有API学习
www.MyException.Cn 网友分享于:2015-04-24 浏览:0次 NSData全部API学习. 学习NSData,在网上找资料竟然都是拷贝的纯代码,没人去解释.在这种网上 ...
- unity爬坑记录
这里记一下平时遇到的unity bug: unity2017最好不要在prefab上面修改它上面的组件参数 最好是拖放到场景之后修改场景内的物体组件参数 完事了apply一下删掉 不这样做的话 可能u ...
- Linux 获取本机IP、MAC地址用法大全
getifaddrs()和struct ifaddrs的使用,获取本机IP ifaddrs结构体定义如下: struct ifaddrs { struct ifaddrs *ifa_next; /* ...
- ABP框架源码学习之授权逻辑
asp.net core的默认的几种授权方法参考"雨夜朦胧"的系列博客,这里要强调的是asp.net core mvc中的授权和asp.net mvc中的授权不一样,建议先看前面& ...
- DxPackNet 2.视频截图和捕捉帧图片
在上一节的基础上 打开了摄像头后: 1.视频截图------调用 CatchBmp 方法即可获取当前帧的 bmp 图像, //调用截屏函数 获取当前图片 Bitmap bmp = camCaptur ...
- Flask從入門到入土(一)——程序的基本結構
一.初始化 所有Flask程序都必須創建一個程序實例.Web服務器使用一種名爲Web服務器網關接口的協議,把接收自客戶端的所有請求都轉交給這個對象處理.程序實例書Flask類的對象,創建代碼: fro ...
- React——共享state
通常,一些组件需要反映相同的数据更改,这种情况推荐将共享state移动到它们最近的公共祖先上. 在这里有一个例子:有一个温度计算器计算在给定温度是否能让水沸腾,用户可以输入华氏温度也能输入摄氏温度,当 ...
- RestTemplate 支持服务器内302重定向
Stack Overflow 里找到的代码,可以正常返回服务器302重定向后的响应 final RestTemplate restTemplate = new RestTemplate(); fina ...