[LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二
Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.
Note:
- Given target value is a floating point.
- You may assume k is always valid, that is: k≤ total nodes.
- You are guaranteed to have only one unique set of k values in the BST that are closest to the target.
Example:
Input: root = [4,2,5,1,3], target = 3.714286, and k = 2
4
/ \
2 5
/ \
1 3
Output: [4,3]
Follow up:
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?
这道题是之前那道 Closest Binary Search Tree Value 的拓展,那道题只让找出离目标值最近的一个节点值,而这道题让找出离目标值最近的k个节点值,难度瞬间增加了不少,博主最先想到的方法是用中序遍历将所有节点值存入到一个一维数组中,由于二分搜索树的性质,这个一维数组是有序的,然后再在有序数组中需要和目标值最近的k个值就简单的多,参见代码如下:
解法一:
class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res, v;
inorder(root, v);
int idx = ;
double diff = numeric_limits<double>::max();
for (int i = ; i < v.size(); ++i) {
if (diff >= abs(target - v[i])) {
diff = abs(target - v[i]);
idx = i;
}
}
int left = idx - , right = idx + ;
for (int i = ; i < k; ++i) {
res.push_back(v[idx]);
if (left >= && right < v.size()) {
if (abs(v[left] - target) > abs(v[right] - target)) {
idx = right;
++right;
} else {
idx = left;
--left;
}
} else if (left >= ) {
idx = left;
--left;
} else if (right < v.size()) {
idx = right;
++right;
}
}
return res;
}
void inorder(TreeNode *root, vector<int> &v) {
if (!root) return;
inorder(root->left, v);
v.push_back(root->val);
inorder(root->right, v);
}
};
还有一种解法是直接在中序遍历的过程中完成比较,当遍历到一个节点时,如果此时结果数组不到k个,直接将此节点值加入结果 res 中,如果该节点值和目标值的差值的绝对值小于结果 res 的首元素和目标值差值的绝对值,说明当前值更靠近目标值,则将首元素删除,末尾加上当前节点值,反之的话说明当前值比结果 res 中所有的值都更偏离目标值,由于中序遍历的特性,之后的值会更加的遍历,所以此时直接返回最终结果即可,参见代码如下:
解法二:
class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
inorder(root, target, k, res);
return res;
}
void inorder(TreeNode *root, double target, int k, vector<int> &res) {
if (!root) return;
inorder(root->left, target, k, res);
if (res.size() < k) res.push_back(root->val);
else if (abs(root->val - target) < abs(res[] - target)) {
res.erase(res.begin());
res.push_back(root->val);
} else return;
inorder(root->right, target, k, res);
}
};
下面这种方法是上面那种方法的迭代写法,原理一模一样,参见代码如下:
解法三:
class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (p || !s.empty()) {
while (p) {
s.push(p);
p = p->left;
}
p = s.top(); s.pop();
if (res.size() < k) res.push_back(p->val);
else if (abs(p->val - target) < abs(res[] - target)) {
res.erase(res.begin());
res.push_back(p->val);
} else break;
p = p->right;
}
return res;
}
};
在来看一种利用最大堆来解题的方法,堆里保存的一个差值 diff 和节点值的 pair,中序遍历二叉树(也可以用其他遍历方法),然后对于每个节点值都计算一下和目标值之差的绝对值,由于最大堆的性质,diff 大的自动拍到最前面,维护k个 pair,如果超过了k个,就把堆前面大的 pair 删掉,最后留下的k个 pair,将 pair 中的节点值取出存入结果 res 中返回即可,参见代码如下:
解法四:
class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
priority_queue<pair<double, int>> q;
inorder(root, target, k, q);
while (!q.empty()) {
res.push_back(q.top().second);
q.pop();
}
return res;
}
void inorder(TreeNode *root, double target, int k, priority_queue<pair<double, int>> &q) {
if (!root) return;
inorder(root->left, target, k, q);
q.push({abs(root->val - target), root->val});
if (q.size() > k) q.pop();
inorder(root->right, target, k, q);
}
};
下面的这种方法用了两个栈,pre 和 suc,其中 pre 存小于目标值的数,suc 存大于目标值的数,开始初始化 pre 和 suc 的时候,要分别将最接近目标值的稍小值和稍大值压入 pre 和 suc,然后循环k次,每次比较 pre 和 suc 的栈顶元素,看谁更接近目标值,将其存入结果 res 中,然后更新取出元素的栈,依次类推直至取完k个数返回即可,参见代码如下:
解法五:
class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
stack<TreeNode*> pre, suc;
while (root) {
if (root->val <= target) {
pre.push(root);
root = root->right;
} else {
suc.push(root);
root = root->left;
}
}
while (k-- > ) {
if (suc.empty() || !pre.empty() && target - pre.top()->val < suc.top()->val - target) {
res.push_back(pre.top()->val);
getPredecessor(pre);
} else {
res.push_back(suc.top()->val);
getSuccessor(suc);
}
}
return res;
}
void getPredecessor(stack<TreeNode*> &pre) {
TreeNode *t = pre.top(); pre.pop();
if (t->left) {
pre.push(t->left);
while (pre.top()->right) pre.push(pre.top()->right);
}
}
void getSuccessor(stack<TreeNode*> &suc) {
TreeNode *t = suc.top(); suc.pop();
if (t->right) {
suc.push(t->right);
while (suc.top()->left) suc.push(suc.top()->left);
}
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/272
类似题目:
Closest Binary Search Tree Value
参考资料:
https://leetcode.com/problems/closest-binary-search-tree-value-ii/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二的更多相关文章
- [LeetCode] 272. Closest Binary Search Tree Value II 最近的二分搜索树的值之二
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- LeetCode Closest Binary Search Tree Value II
原题链接在这里:https://leetcode.com/problems/closest-binary-search-tree-value-ii/ 题目: Given a non-empty bin ...
- [LeetCode] Closest Binary Search Tree Value 最近的二分搜索树的值
Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...
- LeetCode Closest Binary Search Tree Value
原题链接在这里:https://leetcode.com/problems/closest-binary-search-tree-value/ Given a non-empty binary sea ...
- [Locked] Closest Binary Search Tree Value & Closest Binary Search Tree Value II
Closest Binary Search Tree Value Given a non-empty binary search tree and a target value, find the ...
- [LeetCode] 272. Closest Binary Search Tree Value II 最近的二叉搜索树的值 II
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- 272. Closest Binary Search Tree Value II
题目: Given a non-empty binary search tree and a target value, find k values in the BST that are close ...
- [LeetCode#272] Closest Binary Search Tree Value II
Problem: Given a non-empty binary search tree and a target value, find k values in the BST that are ...
- [leetcode]272. Closest Binary Search Tree Value II二叉搜索树中最近的值2
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
随机推荐
- 关于png、jpg、gif切图时的使用感悟
关于png.jpg.gif切图时的使用感悟 曾经切图时都是一股脑所有图全切成jpg格式,最近突然心血来潮简单的研究了下其他图片格式的具体属性,才突然发现走了不少弯路,并没有做到使图片用最小体积展现出最 ...
- jQuery-1.9.1源码分析系列完毕目录整理
jQuery 1.9.1源码分析已经完毕.目录如下 jQuery-1.9.1源码分析系列(一)整体架构 jQuery-1.9.1源码分析系列(一)整体架构续 jQuery-1.9.1源码分析系列(二) ...
- 超越 JSON: Spearal 序列化协议简介
Spearal 是一个新的开源的序列化协议,这个协议旨在初步替换JSON 将HTML和移动应用连接到Java的后端. Spearal的主要目的是提供一个序列协议,这个协议即使是在端点间传输的复杂的 ...
- 同比 VS 环比
同比(YoY=year on year):与历史同时期比较,例如2014年7月份与2013年7月份相比,叫同比 环比(MoM=month on month):是本期统计数据与上期比较,例如2014年7 ...
- Java Business Process Management(业务流程管理) 初识环境搭建
一.简介 (一)什么是jbpm JBPM,全称是Java Business Process Management(业务流程管理),它是覆盖了业务流程管理.工作流.服务协作等领域的一个开源的.灵活的.易 ...
- 怎样给div增加resize事件
当浏览器窗口被调整到一个新的高度或宽度时,就会触发resize事件,这个事件在window上面触发,那么如何给div元素增加resize事件,监听div的高度或宽度的改变呢? 先来回答另一个问题,监听 ...
- getting started with transformjs
Introduction In the past two years, more and more friends for mobile web development have used the t ...
- javascript 类型转换。
学校js感觉好漫长,断断续续,要坚持每天都能学到点,总结了下数据类型的转换. Javascript的变量是松散类型的,它可以存储Javascript支持的任何数据类型,其变量的类型可以在运行时被动态改 ...
- ES6之数组扩展方法【一】(相当好用)
form 转化为真正的数组 先说一下使用场景,在Js中,我们要经常操作DOM,比如获取全部页面的input标签,并且找到类型为button的元素,然后给这个按钮注册一个点击事件,我们可能会这样操作: ...
- 八皇后算法的另一种实现(c#版本)
八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...