Given an integer n, return the number of trailing zeroes in n!.

Example 1:

Input: 3
Output: 0
Explanation: 3! = 6, no trailing zero.

Example 2:

Input: 5
Output: 1
Explanation: 5! = 120, one trailing zero.

Note: Your solution should be in logarithmic time complexity.

Credits:
Special thanks to @ts for adding this problem and creating all test cases.

这道题并没有什么难度,是让求一个数的阶乘末尾0的个数,也就是要找乘数中 10 的个数,而 10 可分解为2和5,而2的数量又远大于5的数量(比如1到 10 中有2个5,5个2),那么此题即便为找出5的个数。仍需注意的一点就是,像 25,125,这样的不只含有一个5的数字需要考虑进去,参加代码如下:

C++ 解法一:

class Solution {
public:
int trailingZeroes(int n) {
int res = ;
while (n) {
res += n / ;
n /= ;
}
return res;
}
};

Java 解法一:

public class Solution {
public int trailingZeroes(int n) {
int res = 0;
while (n > 0) {
res += n / 5;
n /= 5;
}
return res;
}
}

这题还有递归的解法,思路和上面完全一样,写法更简洁了,一行搞定碉堡了。

C++ 解法二:

class Solution {
public:
int trailingZeroes(int n) {
return n == ? : n / + trailingZeroes(n / );
}
};

Java 解法二:

public class Solution {
public int trailingZeroes(int n) {
return n == 0 ? 0 : n / 5 + trailingZeroes(n / 5);
}
}

Github 同步地址:

https://github.com/grandyang/leetcode/issues/172

类似题目:

Number of Digit One

Preimage Size of Factorial Zeroes Function

参考资料:

https://leetcode.com/problems/factorial-trailing-zeroes/

https://leetcode.com/problems/factorial-trailing-zeroes/discuss/52371/My-one-line-solutions-in-3-languages

https://leetcode.com/problems/factorial-trailing-zeroes/discuss/52373/Simple-CC%2B%2B-Solution-(with-detailed-explaination)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Factorial Trailing Zeroes 求阶乘末尾零的个数的更多相关文章

  1. [LeetCode] 172. Factorial Trailing Zeroes 求阶乘末尾零的个数

    Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explan ...

  2. [CareerCup] 17.3 Factorial Trailing Zeros 求阶乘末尾零的个数

    LeetCode上的原题,讲解请参见我之前的博客Factorial Trailing Zeroes. 解法一: int trailing_zeros(int n) { ; while (n) { re ...

  3. LeetCode 172. Factorial Trailing Zeroes (阶乘末尾零的数量)

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  4. 172. Factorial Trailing Zeroes(阶乘中0的个数 数学题)

    Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explan ...

  5. LightOj 1138 - Trailing Zeroes (III) 阶乘末尾0的个数 & 二分

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1138 题意:给你一个数n,然后找个一个最小的数x,使得x!的末尾有n个0:如果没有输出 ...

  6. Algorithm --> 求阶乘末尾0的个数

    求阶乘末尾0的个数 (1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0. (2)求N!的二进制表示中最低位为1的位置. 第一题 考虑哪些数相 ...

  7. LeetCode Factorial Trailing Zeroes Python

    Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. 题目意思: n求阶乘 ...

  8. [LeetCode] Factorial Trailing Zeroes 阶乘末尾0

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  9. 172. Factorial Trailing Zeroes -- 求n的阶乘末尾有几个0

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

随机推荐

  1. SQL Server 统计信息更新时采样百分比对数据预估准确性的影响

    为什么要写统计信息 最近看到园子里有人写统计信息,楼主也来凑热闹. 话说经常做数据库的,尤其是做开发的或者优化的,统计信息造成的性能问题应该说是司空见惯. 当然解决办法也并非一成不变,“一招鲜吃遍天” ...

  2. 如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源

    1.前言 关于微信内部正在使用的网络层封装库Mars开源的消息,1个多月前就已满天飞(参见<微信Mars:微信内部正在使用的网络层封装库,即将开源>),不过微信团队没有失约,微信Mars ...

  3. ASP.NET Core 中文文档 第二章 指南 (09) 使用 Swagger 生成 ASP.NET Web API 在线帮助测试文档

    原文:ASP.NET Web API Help Pages using Swagger 作者:Shayne Boyer 翻译:谢炀(kiler) 翻译:许登洋(Seay) 对于开发人员来说,构建一个消 ...

  4. import matplolib 时出现"This probably means that tk wasn't installed properly."的解决方法

    最近又添了一台新电脑,配置好各个依赖环境后想用matplotlib画个图,结果报出下面的错误 根据报错分析,应该是C:/Python27/tcl/tk8.5/tk.tcl这个文件出问题了,根据图中的信 ...

  5. 【转】async & await 的前世今生

    async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...

  6. .Net语言 APP开发平台——Smobiler学习日志:如何快速实现快递信息流的效果

    最前面的话:Smobiler是一个在VS环境中使用.Net语言来开发APP的开发平台,也许比Xamarin更方便 样式一 一.目标样式 我们要实现上图中的效果,需要如下的操作: 1.从工具栏上的&qu ...

  7. 配置 EPEL yum 源

    当我们在linux上, 使用yum 安装包时,报错如下: Loaded plugins: product-id, refresh-packagekit, security, subscription- ...

  8. Oracle Blob数据保存为文件

    好久不写文,最近得空写一点.Oracle数据库国内用户量主要在企业上,其中有一种byte的存储称为Blob,并不能直接看. 有时候为了调试需要,可以通过: ,)) ; 这种sql去转为字符串查看,但是 ...

  9. 用Fiddler模拟低速网络环境

    有时候宽频网路用习惯了… 在开发的过程就比较少去考虑最佳化的问题… 但当有人反应说「你的网页好慢」甚至当网路速度慢,会造成你的网页跳出什么啊哩不哒的bug时要如何重现呢? 我们可以用Fiddler 这 ...

  10. Lind.DDD.SSO单点登陆组件的使用(原创)

    回到目录 一般sso的说明 在Lind.DDD框架里,有对单点登陆的集成,原理就是各个网站去sso网站统一登陆授权,之后在sso网站将登陆的token进行存储,存储方式随你(cache,redis,m ...