对于单链表的介绍部分参考自博文数组、单链表和双链表介绍 以及 双向链表的C/C++/Java实现

  1. 单链表介绍

  单向链表(单链表)是链表的一种,它由节点组成,每个节点都包含下一个节点的指针。

   1.1 单链表的示意图

  

  表头为空,表头的后继节点是"节点10"(数据为10的节点),"节点10"的后继节点是"节点20"(数据为10的节点),...

   1.2 单链表添加节点

  

  在"节点10"与"节点20"之间添加"节点15"
  添加之前:"节点10" 的后继节点为"节点20"。
  添加之后:"节点10" 的后继节点为"节点15",而"节点15" 的后继节点为"节点20"。

  需要注意的是在链表头部和其他地方添加结点是不一样的。

  在链表头部添加结点的关键代码为:

 NodePointer ptr = new Node();
ptr->data = val;
ptr->next = head;
head = ptr;

  在其他地方添加结点的关键代码为:

 NodePointer ptr = new Node(), tmpPtr = head;
ptr->data = val;
while(...){...}
ptr->next = tmpPtr->next;
tmpPtr->next = ptr;

   1.3 单链表删除节点

  

  删除"节点30"
  删除之前:"节点20" 的后继节点为"节点30",而"节点30" 的后继节点为"节点40"。
  删除之后:"节点20" 的后继节点为"节点40"。

  需要注意的是在链表首部、尾部和其他地方删除结点是不一样的。

  在链表首部删除结点的关键代码为:

 NodePointer ptr = head, tmpPtr;
...if (pos == ) // 在链表第一个位置
{
head = ptr->next;
delete ptr;
}

  在链表尾部删除结点的关键代码为:

 NodePointer ptr = head, tmpPtr;
while (...){...}
tmpPtr = ptr->next;
ptr->next = NULL;
delete tmpPtr;

  在其他地方删除结点的关键代码为:

 NodePointer ptr = head, tmpPtr;
while(...){...}
tmpPtr = ptr->next;
ptr->next = tmpPtr->next;
delete tmpPtr;

  2. 代码实现

  对于单链表,我定义了一个这样的类LinkedList

 // linkedlist.h
#ifndef LINKEDLIST
#define LINKEDLIST #include <iostream>
#include <cassert> using namespace std; typedef int ElementType; class Node
{
public:
ElementType data;
Node * next;
};
typedef Node * NodePointer; class LinkedList
{
public:
LinkedList();
virtual ~LinkedList();
LinkedList(const LinkedList& origlist);         // 拷贝构造函数
LinkedList& operator=(const LinkedList& origlist);  // 赋值运算符重载
void initList(ElementType * arr, int len);
bool isEmpty();
bool addNode(const int pos, const ElementType val);
bool deleteNode(const int pos);
void displayNodes();
NodePointer getNode(const int pos);
int getLenOfList(); private:
NodePointer head; }; #endif // LINKEDLIST

  实现代码如下:

 // linkedlist.cpp
#include "linkedlist.h" LinkedList::LinkedList()
{
head = NULL;
} LinkedList::~LinkedList()
{
NodePointer ptr = head, tmpPtr;
while (ptr != NULL)
{
tmpPtr = ptr;
ptr = ptr->next;
delete tmpPtr;
}
} LinkedList::LinkedList(const LinkedList& origlist)
{
//head = origlist.head; // 很容易写成这样,这样会造成浅拷贝
NodePointer ptr = origlist.head;
int i = ;
while (ptr != NULL)
{
addNode(i, ptr->data);
ptr = ptr->next;
i++;
}
} LinkedList& LinkedList::operator=(const LinkedList& origlist)
{
//head = origlist.head; // 很容易写成这样,这样会造成浅拷贝
NodePointer ptr = origlist.head;
int i = ;
while (ptr != NULL)
{
addNode(i, ptr->data);
ptr = ptr->next;
i++;
}
return *this;
} void LinkedList::initList(ElementType * arr, int len)
{
for (int i = ; i < len; i++)
{
addNode(i, arr[i]);
}
} bool LinkedList::isEmpty()
{
return head == NULL;
} bool LinkedList::addNode(const int pos, const ElementType val)
{
bool success = true;
int len = getLenOfList();
// assert(0 <= pos <= len);
if (pos < || pos > len)
{
cerr << "The node at position " << pos << " you want to add is less than zero or larger than "
<< "the length of list ." << endl;
success = false;
throw out_of_range("out_of_range");
}
else
{
NodePointer ptr = new Node();
ptr->data = val;
if (pos == ) // 如果添加的元素在第1个
{
ptr->next = head;
head = ptr;
}
else // 其他
{
NodePointer tmpPtr = head;
int count = ;
while (tmpPtr != NULL && count < pos - )
{
tmpPtr = tmpPtr->next;
count++;
}
ptr->next = tmpPtr->next;
tmpPtr->next = ptr;
} } return success;
} bool LinkedList::deleteNode(const int pos)
{
bool success = true;
int len = getLenOfList();
if (len == )
{
cerr << "There is no element in the list." << endl;
success = false;
}
else
{
NodePointer ptr = head, tmpPtr;
int count = ;
// assert(0 <= pos <= len);
if (pos < || pos > len - )
{
cerr << "The node at position " << pos << " you want to delete is less than zero or larger than "
<< "the length of list ." << endl;
success = false;
throw out_of_range("out_of_range");
}
else if (pos == ) // 在链表第一个位置
{
head = ptr->next;
delete ptr;
}
else if (pos == len - ) // 在链表最后一个位置
{
while (ptr != NULL && count < pos - )
{
ptr = ptr->next;
count++;
}
tmpPtr = ptr->next;
ptr->next = NULL;
delete tmpPtr;
}
else // 其他
{
while (ptr != NULL && count < pos - )
{
ptr = ptr->next;
count++;
}
tmpPtr = ptr->next;
ptr->next = tmpPtr->next;
delete tmpPtr;
}
}
return success;
} void LinkedList::displayNodes()
{
int len = getLenOfList();
if (len == )
{
cerr << "There is no element in the list." << endl;
}
else
{
NodePointer ptr = head;
int sequence = ;
while (ptr != NULL)
{
cout << "Seq: " << sequence << "; Data: " << ptr->data << "."<< endl;;
ptr = ptr->next;
sequence++;
}
} } NodePointer LinkedList::getNode(const int pos)
{
int len = getLenOfList();
if (len == )
{
cerr << "There is no element in the list." << endl;
return NULL;
}
else
{
// assert(0 <= pos <= len);
if (pos < || pos > len - )
{
cerr << "The item at position " << pos << " you want to get is less than zero or "
<< "larger than the length of list." << endl;
throw out_of_range("out_of_range");
// return NULL;
}
else
{
NodePointer ptr = head;
int count = ;
while (ptr != NULL && count < pos)
{
ptr = ptr->next;
count++;
}
return ptr;
}
}
} int LinkedList::getLenOfList()
{
int len = ;
NodePointer ptr = head;
while (ptr != NULL)
{
len++;
ptr = ptr->next;
}
return len;
}

linkedlist.cpp

  Boost单元测试代码如下:

 // BoostUnitTest.cpp
#define BOOST_TEST_MODULE LinkedList_Test_Module #include "stdafx.h"
#include "D:\VSProject\Algorithm\List\LinkedList\SingleLinkedList_BasedOnPointer\SingleLinkedList\SingleLinkedList\linkedlist.h" struct LinkedList_Fixture
{
public:
LinkedList_Fixture()
{
testLinkedList = new LinkedList();
}
~LinkedList_Fixture()
{
delete testLinkedList;
} LinkedList * testLinkedList; }; BOOST_FIXTURE_TEST_SUITE(LinkedList_Test_Suite, LinkedList_Fixture) BOOST_AUTO_TEST_CASE( LinkedList_Normal_Test )
{
// isEmpty --------------------------------------------
BOOST_REQUIRE(testLinkedList->isEmpty() == true); // getLenOfList ---------------------------------------
BOOST_REQUIRE(testLinkedList->getLenOfList() == ); // addNode & getNode ---------------------------------
BOOST_REQUIRE(testLinkedList->addNode(, ) == true);
BOOST_REQUIRE((testLinkedList->getNode())->data == );
BOOST_REQUIRE((testLinkedList->getNode())->next == NULL);
BOOST_REQUIRE(testLinkedList->isEmpty() == false);
BOOST_REQUIRE(testLinkedList->getLenOfList() == ); BOOST_REQUIRE(testLinkedList->addNode(, ) == true);
BOOST_REQUIRE((testLinkedList->getNode())->data == );
BOOST_REQUIRE((testLinkedList->getNode())->next == NULL);
BOOST_REQUIRE(testLinkedList->isEmpty() == false);
BOOST_REQUIRE(testLinkedList->getLenOfList() == ); BOOST_REQUIRE(testLinkedList->addNode(, ) == true);
BOOST_REQUIRE((testLinkedList->getNode())->data == );
BOOST_REQUIRE((testLinkedList->getNode())->next != NULL);
BOOST_REQUIRE(testLinkedList->isEmpty() == false);
BOOST_REQUIRE(testLinkedList->getLenOfList() == ); // deleteNode -----------------------------------------
BOOST_REQUIRE(testLinkedList->deleteNode() == true);
BOOST_REQUIRE((testLinkedList->getNode())->data == );
BOOST_REQUIRE(testLinkedList->getLenOfList() == ); BOOST_REQUIRE(testLinkedList->deleteNode() == true);
BOOST_REQUIRE((testLinkedList->getNode())->data == );
BOOST_REQUIRE(testLinkedList->getLenOfList() == ); BOOST_REQUIRE(testLinkedList->deleteNode() == true);
BOOST_REQUIRE(testLinkedList->getLenOfList() == ); // initList -------------------------------------------
int arr[] = { , , };
int len = sizeof(arr) / sizeof(int);
testLinkedList->initList(arr, len);
BOOST_REQUIRE(testLinkedList->getLenOfList() == );
BOOST_REQUIRE((testLinkedList->getNode())->data == );
BOOST_REQUIRE((testLinkedList->getNode())->data == );
BOOST_REQUIRE((testLinkedList->getNode())->data == );
BOOST_REQUIRE((testLinkedList->getNode())->next == NULL); } BOOST_AUTO_TEST_CASE(LinkedList_Abnormal_Test)
{
int arr[] = { , , };
int len = sizeof(arr) / sizeof(int);
testLinkedList->initList(arr, len); // addNode -------------------------------------------
BOOST_REQUIRE_THROW(testLinkedList->addNode(-, ), out_of_range);
BOOST_REQUIRE_THROW(testLinkedList->addNode(, ), out_of_range); // deleteNode ----------------------------------------
BOOST_REQUIRE_THROW(testLinkedList->deleteNode(-), out_of_range);
BOOST_REQUIRE_THROW(testLinkedList->deleteNode(), out_of_range); // getNode --------------------------------------------
BOOST_REQUIRE_THROW(testLinkedList->getNode(-), out_of_range);
BOOST_REQUIRE_THROW(testLinkedList->getNode(), out_of_range); } BOOST_AUTO_TEST_CASE(LinkedList_CopyConstuctor_Test)
{
int arr[] = { , , };
int len = sizeof(arr) / sizeof(int);
testLinkedList->initList(arr, len); //LinkedList * testLinkedList2(testLinkedList); // 特别容易写成这样,这样导致的结果就是testLinkedList2和
// testLinkedList指向同一块内存这样的写法才是正确的
// 该句等同于
// LinkedList * testLinkedList2;
// testLinkedList2 = testLinkedList;
//LinkedList testLinkedList2(*testLinkedList); // 要不就这样子定义,只不过此时testLinkedList2不是一个指针
LinkedList * testLinkedList3 = new LinkedList(*testLinkedList);
BOOST_REQUIRE(testLinkedList3->getLenOfList() == );
BOOST_REQUIRE((testLinkedList3->getNode())->data == );
BOOST_REQUIRE((testLinkedList3->getNode())->data == );
BOOST_REQUIRE((testLinkedList3->getNode())->data == );
BOOST_REQUIRE((testLinkedList3->getNode())->next == NULL);
} BOOST_AUTO_TEST_CASE(LinkedList_EqualOperator_Test)
{
int arr[] = { , , };
int len = sizeof(arr) / sizeof(int);
testLinkedList->initList(arr, len); // LinkedList * testLinkedList2 = testLinkedList; // 错误的写法
LinkedList * testLinkedList2 = new LinkedList();
*testLinkedList2 = *testLinkedList; BOOST_REQUIRE(testLinkedList2->getLenOfList() == );
BOOST_REQUIRE((testLinkedList2->getNode())->data == );
BOOST_REQUIRE((testLinkedList2->getNode())->data == );
BOOST_REQUIRE((testLinkedList2->getNode())->data == );
BOOST_REQUIRE((testLinkedList2->getNode())->next == NULL);
} BOOST_AUTO_TEST_SUITE_END()

BoostUnitTest.cpp

  本篇博文的代码均托管到Taocode : http://code.taobao.org/p/datastructureandalgorithm/src/.

"《算法导论》之‘线性表’":基于指针实现的单链表的更多相关文章

  1. "《算法导论》之‘线性表’":基于数组实现的单链表

    对于单链表,我们大多时候会用指针来实现(可参考基于指针实现的单链表).现在我们就来看看怎么用数组来实现单链表. 1. 定义单链表中结点的数据结构 typedef int ElementType; cl ...

  2. JavaScript 数据结构与算法之美 - 线性表(数组、栈、队列、链表)

    前言 基础知识就像是一座大楼的地基,它决定了我们的技术高度. 我们应该多掌握一些可移值的技术或者再过十几年应该都不会过时的技术,数据结构与算法就是其中之一. 栈.队列.链表.堆 是数据结构与算法中的基 ...

  3. ACM金牌选手算法讲解《线性表》

    哈喽,大家好,我是编程熊,双非逆袭选手,字节跳动.旷视科技前员工,ACM亚洲区域赛金牌,保研985研究生,分享算法与数据结构.计算机学习经验,帮助大家进大厂~ 公众号:『编程熊』 文章首发于: ACM ...

  4. 已知长度为n的线性表采用顺序结构,写一算法删除该线性表中所有值为item的元素

    /** * @author:(LiberHome) * @date:Created in 2019/2/27 23:34 * @description: * @version:$ */ /*已知长度为 ...

  5. 数据结构与算法系列2 线性表 使用java实现动态数组+ArrayList源码详解

    数据结构与算法系列2 线性表 使用java实现动态数组+ArrayList源码详解 对数组有不了解的可以先看看我的另一篇文章,那篇文章对数组有很多详细的解析,而本篇文章则着重讲动态数组,另一篇文章链接 ...

  6. 数据结构(1) 第一天 算法时间复杂度、线性表介绍、动态数组搭建(仿Vector)、单向链表搭建、企业链表思路

    01 数据结构基本概念_大O表示法 无论n是多少都执行三个具体步骤 执行了12步 O(12)=>O(1) O(n) log 2 N = log c N / log c N (相当于两个对数进行了 ...

  7. 数据结构与算法系列2 线性表 链表的分类+使用java实现链表+链表源码详解

    数据结构与算法系列2.2 线性表 什么是链表? 链表是一种物理存储单元上非连续,非顺序的存储结构,数据元素的逻辑顺序是通过链表的链接次序实现的一系列节点组成,节点可以在运行时动态生成,每个节点包括两个 ...

  8. javascript实现数据结构与算法系列:线性表的静态单链表存储结构

    有时可借用一维数组来描述线性链表,这就是线性表的静态单链表存储结构. 在静态链表中,数组的一个分量表示一个结点,同时用游标(cur)代替指针指示结点在数组中的相对位置.数组的第0分量可看成头结点,其指 ...

  9. 数据结构导论 四 线性表的顺序存储VS链式存储

    前几章已经介绍到了顺序存储.链式存储 顺序存储:初始化.插入.删除.定位 链式存储:初始化.插入.删除.定位 顺序存储:初始化 strudt student{ int ID://ID char nam ...

随机推荐

  1. Hibernate之综合问题

    n + 1问题 query.iterate()方式返回迭代查询会开始发出一条语句:查询所有记录ID语句 Hibernate: select student0_.id ascol_0_0_from t_ ...

  2. Spark技术内幕:Shuffle Pluggable框架详解,你怎么开发自己的Shuffle Service?

    首先介绍一下需要实现的接口.框架的类图如图所示(今天CSDN抽风,竟然上传不了图片.如果需要实现新的Shuffle机制,那么需要实现这些接口. 1.1.1  org.apache.spark.shuf ...

  3. C++ ifstream,ofstream读写二进制文件

    为什要吧数据存为二进制 这个嘛,是我个人习惯,一般,我们会把日志文件存为文本文件.数据文件存成二进制文件. 其实,我们接触的文件,比如图像.视频都是以二进制的形式存储的,要想查看这类数据,必须知道数据 ...

  4. J-Robot,能走、能跳舞的机器人

      最近一个月基本上没有更新博客了,主要是和朋友一起在捣鼓J-Robot这个机器人,现在基本是可以控制它了,也算是一点小小的成就感吧.   先来几张图片吧. 再来一张:   是否觉得呆呆的?来,Jim ...

  5. RxJava在Android中使用场景详解

    RxJava 系列文章 <一,RxJava create操作符的用法和源码分析> <二,RxJava map操作符用法详解> <三,RxJava flatMap操作符用法 ...

  6. 自定义控件辅助神器ViewDragHelper

    ViewDragHelper作为官方推出的手势滑动辅助工具,极大的简化了我们对手势滑动的处理逻辑,v4包中的SlidingPaneLayout和DrawerLayout内部都有ViewDragHelp ...

  7. 通过一个color创建一个image

    使用的地方: [_addButton setBackgroundImage:[UIImage imageWithColor:[[UIColor whiteColor] colorWithAlphaCo ...

  8. m2eclipse Error:ArtifactTransferException: Failure to transfer org.apache.felix:org.apache.felix.res

    Issue: When you create and compile a project with pom.xml using m2eclipse, it may report some error ...

  9. Java之泛型编程

    1.概念 泛型就是参数化类型.泛型的好处是在编译的时候检查类型安全,并且所有的强制转换都是自动和隐式的,提高代码的重用率. 2.案例 1)先看下面案例: //不适用泛型编程 Apple app0=ne ...

  10. Chipmunk Rigid Bodies:cpBody

    Chipmunk刚体支持3种不同的类型: Dynamic(动态),Static(静态)以及Kinematic(混合态)刚体.它们拥有不同的行为和性能特征. 动态刚体是默认的刚体类型.它们可以对碰撞做出 ...