bzoj 3629 聪明的燕姿 约数和+dfs
考试只筛到了30分,正解dfs......
对于任意N=P1^a1*P2^a2*......*Pn^an,
F(N)=(P1^0+P1^1+...+P1^a1)(P2^0+P2^1+...+P2^a2)*...*(Pn^0+Pn^1+...+Pn^an)
从小到大枚举素数P,依次判定是否有K满足(P^0+P^1+...+P^K)|X
有一些细节需要处理,比如当前S为某大素数+1......
一开始打O(√n)一直T两个点,后来改成了O(√s)就过了。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
int prime[100005],top,tot,ans[100005],n,ss;
bool bo[100010];
void work()
{
for(int i=2;i<=100005;i++)
{
if(!bo[i])
prime[++top]=i;
for(int j=1;j<=top&&i*prime[j]<=100005;j++){
bo[i*prime[j]]=1;
if(!(i%prime[j])) break;
}
}
}
bool getp(int x)
{
for(int i=1;prime[i]*prime[i]<=x;i++)
if(x%prime[i]==0) return 0;
return 1;
}
void dfs(int s,int p,int now)
{
//printf("%d %d %d\n",s,p,now);
if(s==1){
ans[++tot]=now;
return ;
}
if((s-1)>prime[p]&&getp(s-1)) ans[++tot]=now*(s-1);
for(int i=p+1;prime[i]*prime[i]<=s;i++)
{
long long t=1,all=1;
for(int j=1;t<=s;j++)
{
all*=prime[i]; t+=all;
if(s%t==0)
dfs(s/t,i,now*all);
}
}
}
int main()
{
work();
while(scanf("%d",&n)!=EOF)
{
tot=0; ss=sqrt(n);
dfs(n,0,1);
printf("%d\n",tot);
sort(ans+1,ans+tot+1);
for(int i=1;i<tot;i++)
printf("%d ",ans[i]);
if(tot) printf("%d\n",ans[tot]);
}
}
bzoj 3629 聪明的燕姿 约数和+dfs的更多相关文章
- LOJ 2234/BZOJ 3629 聪明的燕姿(数论+DFS)
题面 传送门 分析 看到约数之和,我们首先想到约数和公式 若$ x=\prod_{i=1}^{n}p_i^{k_i} \(,则x的约数和为\) \prod_{i=1}^{n} \sum_{j=0}^{ ...
- BZOJ 3629 JLOI2014 聪明的燕姿 约数和+DFS
根据约数和公式来拆s,最后再把答案乘出来,我们发先这样的话递归层数不会太大每层枚举次数也不会太多,然而我们再来个剪枝就好了 #include<cstdio> #include<ios ...
- bzoj 3629 [JLOI2014]聪明的燕姿——约数和定理+dfs
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629 如果要搜索,肯定得质因数分解吧:就应该朝这个方向想. **约数和定理: 对于任意一个大 ...
- BZOJ_3629_[JLOI2014]聪明的燕姿_dfs
BZOJ_3629_[JLOI2014]聪明的燕姿_dfs Description 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 ...
- bzoj3629 / P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿 根据唯一分解定理 $n=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 而$ ...
- P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿 题目背景 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排 ...
- 【LG4397】[JLOI2014]聪明的燕姿
[LG4397][JLOI2014]聪明的燕姿 题面 洛谷 题解 考虑到约数和函数\(\sigma = \prod (1+p_i+...+p_i^{r_i})\),直接爆搜把所有数搜出来即可. 爆搜过 ...
- AcWing1296. 聪明的燕姿
聪明的燕姿 解题思路: 首先我们肯定要用到约数之和定理 但是有个问题就是要怎么用 根据经验得知,约数最多也就六七个左右,不然直接就超了s的范围.所以我们考虑用爆搜来做 但是用爆搜的话还是要优化一下思路 ...
- [补档][JLOI 2017]聪明的燕姿
[NOI 2008]假面舞会 题目 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排着队拿着爱的号码牌 ...
随机推荐
- python3+django2 开发易语言网络验证(中)
第四步:网络验证的逻辑开发 1.将model注册到adminx.py中 1.在apps/yanzheng目录下新建admin.py 文件,添加代码: import xadmin from xadmin ...
- insertion sort list (使用插入排序给链表排序)
Sort a linked list using insertion sort. 对于数组的插入排序,可以参看排序算法入门之插入排序(java实现),遍历每个元素,然后相当于把每个元素插入到前面已经排 ...
- Mybatis与Ibatis比较
随着开发团队转投Google Code旗下,ibatis3.x正式更名为Mybatis 虽然从正式版发布至今也有近一年时间,官方也非常友好的提供了中文版的使用手册,不过相信很多人还在项目中使用iba ...
- vfd with stm8
2018-01-14 22:50:26 之前写了pt6311的驱动,要做时钟考虑使用stm8做主控,于是乎将之前的驱动移植到stm8上. 顺带熟悉了stm8的操作2333. 上源码: #ifndef ...
- Ubuntu 16.04开启SSH服务
安装: sudo apt-get install openssh-server 启动: sudo service ssh start 查询服务启动状态: sudo ps -e | grep ssh 或 ...
- Windows下配置vue的环境
最近在学习vue.js,希望前端能用vue来作为主要框架.这里记录一下NPM在Windows中安装过程. 下载安装 下载地址 下载v6.11.0 LTS稳定版. 在C盘创建nodejs目录,并进行安装 ...
- 对JavaScript事件机制的一点理解
JavaScript通过事件机制实现了异步操作,这种异步操作可以使CPU可以在IO任务的等待中被释放出来处理其他任务,等待IO结束再去处理这个任务.这个是一个基本的事件机制. 那么是不是说事件从监听到 ...
- 代码生成平台Xxl-Code-Generator
<代码生成平台Xxl-Code-Generator> 一.简介 1.1 概述 Xxl-Code-Generator 是一个 "controller/service/dao/myb ...
- QT中正则表达式的简单说明
使用方法: QRegExp acNumRE("[0-9]{19}"); lineEdit->setValidator(new QRegExpValidator(acNumRE ...
- java float double精度为什么会丢失?浅谈java的浮点数精度问题 【转】
由于对float或double 的使用不当,可能会出现精度丢失的问题.问题大概情况可以通过如下代码理解: public class FloatDoubleTest { public static vo ...