3040: 最短路(road)

Time Limit: 60 Sec  Memory Limit: 200 MB
Submit: 2476  Solved: 814
[Submit][Status][Discuss]

Description

N个点,M条边的有向图,求点1到点N的最短路(保证存在)。
1<=N<=1000000,1<=M<=10000000

Input

第一行两个整数N、M,表示点数和边数。
第二行六个整数T、rxa、rxc、rya、ryc、rp。

前T条边采用如下方式生成:
1.初始化x=y=z=0。
2.重复以下过程T次:
x=(x*rxa+rxc)%rp;
y=(y*rya+ryc)%rp;
a=min(x%n+1,y%n+1);
b=max(y%n+1,y%n+1);
则有一条从a到b的,长度为1e8-100*a的有向边。

后M-T条边采用读入方式:
接下来M-T行每行三个整数x,y,z,表示一条从x到y长度为z的有向边。

1<=x,y<=N,0<z,rxa,rxc,rya,ryc,rp<2^31

Output

一个整数,表示1~N的最短路。

Sample Input

3 3
0 1 2 3 5 7
1 2 1
1 3 3
2 3 1

Sample Output

2

HINT

【注释】

请采用高效的堆来优化Dijkstra算法。

Source

WC2013营员交流-lydrainbowcat


配对堆不仅快,还支持修改操作

point_iterator 是它的迭代器

q.modify(迭代器,修改成的元素)

不知道为什么手写结构体就不行,用pair就可以

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <ext/pb_ds/priority_queue.hpp>
typedef long long ll;
#define pa pair<ll,int>
#define mp make_pair
using namespace std;
using namespace __gnu_pbds;
typedef __gnu_pbds::priority_queue<pa,greater<pa> > heap;
const int N=1e6+,M=1e7+;
const ll INF=1e15;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,T,rxa,rxc,rya,ryc,rp,a,b;
int x,y,z;
struct edge{
int v,w,ne;
}e[M];
int cnt,h[N];
inline void ins(int u,int v,int w){
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
} ll d[N];
heap q;
heap::point_iterator id[N];
void dij(){
for(int i=;i<=n;i++) d[i]=INF;
d[]=;id[]=q.push(mp(,));
while(!q.empty()){
int u=q.top().second;q.pop(); //printf("u %d\n",u);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(id[v]!=) q.modify(id[v],mp(d[v],v));
else id[v]=q.push(mp(d[v],v));
}
}
}
}
int main(){
//freopen("in.txt","r",stdin);
n=read();m=read();
T=read();rxa=read();rxc=read();rya=read();ryc=read();rp=read();
m=m-T;
while(T--){
x=y=z=;
x=((ll)x*rxa+rxc)%rp;
y=((ll)y*rya+ryc)%rp;
a=min(x%n+,y%n+);
b=max(y%n+,y%n+);
ins(a,b,-*a);
}
while(m--) x=read(),y=read(),z=read(),ins(x,y,z);
dij();
printf("%lld",d[n]);
}

于是我又去交了一遍luogu的模板题,不开O2 380ms,比SLF优化后的spfa还快

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <ext/pb_ds/priority_queue.hpp>
#define pa pair<int,int>
#define mp make_pair
using namespace std;
using namespace __gnu_pbds;
typedef __gnu_pbds::priority_queue<pa,greater<pa> > heap;
const int N=1e4+,M=5e5+,INF=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v,w;
struct edge{
int v,ne,w;
}e[M];
int h[N],cnt=;
inline void ins(int u,int v,int w){
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
} heap q;
heap::point_iterator it[N];
int d[N];
void dij(int s){
for(int i=;i<=n;i++) d[i]=INF;
d[s]=;
it[s]=q.push(mp(,s));
while(!q.empty()){
int u=q.top().second;q.pop();
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(it[v]!=) q.modify(it[v],mp(d[v],v));
else it[v]=q.push(mp(d[v],v));
}
}
}
}
int main(){
n=read();m=read();s=read();
for(int i=;i<=m;i++){u=read();v=read();w=read();ins(u,v,w);}
dij(s);
for(int i=;i<=n;i++) printf("%d ",d[i]);
}

BZOJ 3040: 最短路(road) [Dijkstra + pb_ds]的更多相关文章

  1. BZOJ 3040: 最短路(road) ( 最短路 )

    本来想学一下配对堆的...结果学着学着就偏了... 之前 kpm 写过这道题 , 前面的边不理它都能 AC .. 我也懒得去写前面的加边了... 用 C++ pb_ds 库里的 pairing_hea ...

  2. BZOJ 3040 最短路 (堆优化dijkstra)

    这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...

  3. BZOJ 3040最短路

    题目描述 给定一个 NN 个点, MM 条有向边的带权图,请你计算从 SS 出发,到每个点的距离. 数据保证你能从 SS 出发到任意点. 输入输出格式 输入格式: 第一行两个整数 NN . MM ,表 ...

  4. 最短路计数——Dijkstra

    题目: 给出一个N个顶点M条边的无向无权图,顶点编号为1−N.问从顶点1开始,到其他每个点的最短路有几条. ——传送门 受到题解的启发,用 Dijkstra A掉(手工代码) 思路: 1.无向无权图, ...

  5. Bzoj 2834: 回家的路 dijkstra,堆优化,分层图,最短路

    2834: 回家的路 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 62  Solved: 38[Submit][Status][Discuss] D ...

  6. Bzoj 2662: [BeiJing wc2012]冻结 dijkstra,堆,分层图,最短路

    2662: [BeiJing wc2012]冻结 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 647  Solved: 348[Submit][Sta ...

  7. BZOJ.2125.最短路(仙人掌 最短路Dijkstra)

    题目链接 多次询问求仙人掌上两点间的最短路径. 如果是在树上,那么求LCA就可以了. 先做着,看看能不能把它弄成树. 把仙人掌看作一个图(实际上就是),求一遍根节点到每个点的最短路dis[i]. 对于 ...

  8. BZOJ 2750 HAOI 2012 Road 高速公路 最短路

    题意: 给出一个有向图,求每条边有多少次作为最短路上的边(任意的起始点). 范围:n <= 1500, m <= 5005 分析: 一个比较容易想到的思路:以每个点作为起点,做一次SPFA ...

  9. hdoj 2544 最短路【dijkstra or spfa】

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

随机推荐

  1. Flume环境搭建_五种案例

    Flume环境搭建_五种案例 http://flume.apache.org/FlumeUserGuide.html A simple example Here, we give an example ...

  2. 从零开始学习前端JAVASCRIPT — 5、JavaScript基础BOM

    1:BOM(Browser  Object  Model)概念 window对象是BOM中所有对象的核心. 2:window属性(较少用) self:self代表自己,相当于window. windo ...

  3. BC高精确度函数使用。

    bc是Binary Calculator的缩写.bc*函数的参数都是操作数加上一个可选的 [int scale],比如string bcadd(string $left_operand, string ...

  4. html dl dt dd标签元素语法结构与使用

    dl dt dd认识及dl dt dd使用方法 标签用于定义列表类型标签. dl dt dd目录 dl dt dd介绍 结构语法 dl dt dd案例 dl dt dd总结 一.dl dt dd认识 ...

  5. Apache日志分析_shell命令行

    说明: 1.我的日志预先设定好按日生成文件:"CustomLog "|/opt/apache/bin/rotatelogs /opt/apache/logs/www.website ...

  6. DEDECMS点击主栏目默认显示第一个子栏目列表的方法

    本文实例讲述了DEDECMS点击主栏目默认显示第一个子栏目列表的方法.分享给大家供大家参考.具体分析如下: 今天公司有个需求是,点击导航上的父栏目进去默认显示第一个子栏目的列表,以下是具体实现方法,可 ...

  7. P2P视频模块

    P2P视频模块数据手册 公  司 : 深圳市万秀电子有限公司 网  站 : http://www.wanxiucx.com 总  机 : 0755-23215689 联系人: 张先生 手  机 : 1 ...

  8. sql语句添加删除外键及其约束

    --删除外键 ALTER TABLE t_base_role_module DROP CONSTRAINT fk_t_base_role_module_t_base_defined_url; --增加 ...

  9. docker 安装 msyql

    **************************************************************************************************** ...

  10. bootstrap-table 表格加载中....处理

    $('#table').bootstrapTable({data:[]}); $('#table').bootstrapTable("showLoading"); ajax数据加载 ...