Dancing Stars on Me(判断正多边形)
Dancing Stars on Me
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 592 Accepted Submission(s): 315
Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.
1≤T≤300 3≤n≤100 −10000≤xi,yi≤10000 All coordinates are distinct.
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
YES
NO
题意:给你一个多边形,问你这个多边形是否是正多边形。。。
题解:无奈啊,我刚开始就判断边是否相等,用差集排序,相邻判断,果断wa,又想着没考虑角度,就想着对相邻两个边求差集,是否相等,各种wa,无耐加心碎啊,然后就暴力了了。。。就判断个相等边都要大于等于2,然后就对了。。。fuck。。。
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define SL(x) scanf("%lld",&x)
#define PI(x) printf("%d",x)
#define PL(x) printf("%lld",x)
#define P_ printf(" ")
#define T_T while(T--)
typedef long long LL;
const int INF=0x3f3f3f3f;
const int MAXN=210;
int N;
struct Node{
LL x,y;
/*Node(LL x=0,LL y=0):x(x),y(y){}*/
};
Node dt[MAXN];
/*LL cross(Node a,Node b){
return a.x*b.y-a.y*b.x;
} int cmp(Node a,Node b){
if(cross(a,b)>=0)return 1;
else return 0;
}*/
/*
Node operator - (Node a,Node b){
return Node(a.x-b.x,a.y-b.y);
}*/
double getl(Node a,Node b){
LL x=a.x-b.x,y=a.y-b.y;
return sqrt(1.0*x*x+1.0*y*y);
}
bool judge(){
//double temp=getl(dt[0],dt[N-1]);
double ans;
for(int i=0;i<N;i++){
// if(temp!=getl(dt[i],dt[i-1]))return false;
double temp=INF;
int cnt=0;
for(int j=0;j<N;j++){
if(i==j)continue;
if(getl(dt[i],dt[j])<temp)temp=getl(dt[i],dt[j]);
if(i&&ans==temp)cnt++;
}
if(!i)ans=temp;
//printf("%lf %d\n",ans,cnt);
if(i)if(temp!=ans||cnt<2)return false;
} /*double x=cross(dt[0]-dt[N-1],dt[0]-dt[1]);
for(int i=1;i<N-1;i++){
int y;
if(x!=(y=cross(dt[i]-dt[i-1],dt[i]-dt[i+1]))){
return false;
}
}
if(x!=cross(dt[N-1]-dt[N-2],dt[N-1]-dt[0]))return false;*/
return true;
}
int main(){
int T;
SI(T);
T_T{
SI(N);
for(int i=0;i<N;i++)SL(dt[i].x),SL(dt[i].y);
//sort(dt,dt+N,cmp);
//for(int i=1;i<N;i++)printf("%d\n",cross(dt[i],dt[i-1]));
if(judge())puts("YES");
else puts("NO");
}
return 0;
}
Dancing Stars on Me(判断正多边形)的更多相关文章
- 2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me
Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Ot ...
- hdu 5533 Dancing Stars on Me 水题
Dancing Stars on Me Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...
- hdu 5533 Dancing Stars on Me
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...
- Dancing Stars on Me
Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Ot ...
- HDU 5533/ 2015长春区域 G.Dancing Stars on Me 暴力
Dancing Stars on Me Problem Description The sky was brushed clean by the wind and the stars were col ...
- Dancing Stars on Me---hdu5533(判断是否为正多边形)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 题意:平面图中 有n个点给你每个点的坐标,判断是否能通过某种连线使得这些点所组成的n边形为 正n ...
- hdu 5533 Dancing Stars on Me(数学,水)
Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...
- 【2015 ICPC亚洲区域赛长春站 G】Dancing Stars on Me(几何+暴力)
Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...
- HDU 5533 Dancing Stars on Me( 有趣的计算几何 )
链接:传送门 题意:给出 n 个点,判断能不能构成一个正 n 边形,这 n 个点坐标是整数 思路:这道题关键就在与这 n 个点坐标是正整数!!!可以简单的分析,如果 n != 4,那一定就不能构成正 ...
随机推荐
- [C#技术参考]在PictureBox 中绘图防止闪烁的办法
开篇之前说点别的,马上年终了,好希望年终奖大大的,但是好像这次项目的展示很重要,所以这几天绷得比较近,但是真的没有感觉烦,就是害怕来不及.所以抓紧了.下面直接正题.说一下用到的东西,都是Google搜 ...
- 简单的scrapy实战:爬取腾讯招聘北京地区的相关招聘信息
简单的scrapy实战:爬取腾讯招聘北京地区的相关招聘信息 简单的scrapy实战:爬取腾讯招聘北京地区的相关招聘信息 系统环境:Fedora22(昨天已安装scrapy环境) 爬取的开始URL:ht ...
- SQL 处理空值
问题: 在数据库中经常会有为null和''的值的列,在查询的时候,我们需要将它们转化成有效的值. 解决方案: 在emp表中的comm注释有的为null有的为'',在查询的时候 我们希望没有注释的显示为 ...
- symfony2-不同bundle的entity的一对多关系
重点:其实和普通一个bundle中一样,只是把entity地址写全就行. 例子: 表commentone (多方) 表shopone(一方) 在Userbundle中的Commentone实体对应关系
- PHP合并数组+与array_merge的区别分析
主要区别是两个或者多个数组中如果出现相同键名,键名分为字符串或者数字,需要注意 1)键名为数字时,array_merge()不会覆盖掉原来的值,但+合并数组则会把最先出现的值作为最终结果返回,而把后面 ...
- jdk、jre与jvm的区别与联系
为了学习数据库,重装了系统,之前前一直在用eclipse,现在准备换成myeclipse,这之前当然需要重新设置环境变量,顺手写下有关jdk.jre与jvm的区别与联系以供交流参考. 首先来说一下JD ...
- Uva 1612 Guess
Thinking about it: 题目要求最后一名(也就是第N位)的分数要尽量的大,那么就一定要求第N-1名的分数也要尽量大.假如N-1可以取400和500,那么N-1应该取500,如果取400, ...
- passwordauthentication yes
ssh ip disconnected:no supported authentication methods available(server sent:publickey,gssapi-keyex ...
- java 执行bat文件 并输出信息
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.i ...
- The Building Blocks-Components of EA part 1- Information and Strategy
1. Zachman Framework Presented as matrix of Rows and Columns representing domain of interest and lev ...