Dancing Stars on Me

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 592    Accepted Submission(s): 315

Problem Description
The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.
Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.
 
Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.
1≤T≤300 3≤n≤100 −10000≤xi,yi≤10000 All coordinates are distinct.
 
Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 
Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
Sample Output
NO
YES
NO
 

题意:给你一个多边形,问你这个多边形是否是正多边形。。。

题解:无奈啊,我刚开始就判断边是否相等,用差集排序,相邻判断,果断wa,又想着没考虑角度,就想着对相邻两个边求差集,是否相等,各种wa,无耐加心碎啊,然后就暴力了了。。。就判断个相等边都要大于等于2,然后就对了。。。fuck。。。

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define SL(x) scanf("%lld",&x)
#define PI(x) printf("%d",x)
#define PL(x) printf("%lld",x)
#define P_ printf(" ")
#define T_T while(T--)
typedef long long LL;
const int INF=0x3f3f3f3f;
const int MAXN=210;
int N;
struct Node{
LL x,y;
/*Node(LL x=0,LL y=0):x(x),y(y){}*/
};
Node dt[MAXN];
/*LL cross(Node a,Node b){
return a.x*b.y-a.y*b.x;
} int cmp(Node a,Node b){
if(cross(a,b)>=0)return 1;
else return 0;
}*/
/*
Node operator - (Node a,Node b){
return Node(a.x-b.x,a.y-b.y);
}*/
double getl(Node a,Node b){
LL x=a.x-b.x,y=a.y-b.y;
return sqrt(1.0*x*x+1.0*y*y);
}
bool judge(){
//double temp=getl(dt[0],dt[N-1]);
double ans;
for(int i=0;i<N;i++){
// if(temp!=getl(dt[i],dt[i-1]))return false;
double temp=INF;
int cnt=0;
for(int j=0;j<N;j++){
if(i==j)continue;
if(getl(dt[i],dt[j])<temp)temp=getl(dt[i],dt[j]);
if(i&&ans==temp)cnt++;
}
if(!i)ans=temp;
//printf("%lf %d\n",ans,cnt);
if(i)if(temp!=ans||cnt<2)return false;
} /*double x=cross(dt[0]-dt[N-1],dt[0]-dt[1]);
for(int i=1;i<N-1;i++){
int y;
if(x!=(y=cross(dt[i]-dt[i-1],dt[i]-dt[i+1]))){
return false;
}
}
if(x!=cross(dt[N-1]-dt[N-2],dt[N-1]-dt[0]))return false;*/
return true;
}
int main(){
int T;
SI(T);
T_T{
SI(N);
for(int i=0;i<N;i++)SL(dt[i].x),SL(dt[i].y);
//sort(dt,dt+N,cmp);
//for(int i=1;i<N;i++)printf("%d\n",cross(dt[i],dt[i-1]));
if(judge())puts("YES");
else puts("NO");
}
return 0;
}

  

Dancing Stars on Me(判断正多边形)的更多相关文章

  1. 2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  2. hdu 5533 Dancing Stars on Me 水题

    Dancing Stars on Me Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

  3. hdu 5533 Dancing Stars on Me

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...

  4. Dancing Stars on Me

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  5. HDU 5533/ 2015长春区域 G.Dancing Stars on Me 暴力

    Dancing Stars on Me Problem Description The sky was brushed clean by the wind and the stars were col ...

  6. Dancing Stars on Me---hdu5533(判断是否为正多边形)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 题意:平面图中 有n个点给你每个点的坐标,判断是否能通过某种连线使得这些点所组成的n边形为 正n ...

  7. hdu 5533 Dancing Stars on Me(数学,水)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  8. 【2015 ICPC亚洲区域赛长春站 G】Dancing Stars on Me(几何+暴力)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  9. HDU 5533 Dancing Stars on Me( 有趣的计算几何 )

    链接:传送门 题意:给出 n 个点,判断能不能构成一个正 n 边形,这 n 个点坐标是整数 思路:这道题关键就在与这 n 个点坐标是正整数!!!可以简单的分析,如果 n != 4,那一定就不能构成正 ...

随机推荐

  1. [C#技术参考]在PictureBox 中绘图防止闪烁的办法

    开篇之前说点别的,马上年终了,好希望年终奖大大的,但是好像这次项目的展示很重要,所以这几天绷得比较近,但是真的没有感觉烦,就是害怕来不及.所以抓紧了.下面直接正题.说一下用到的东西,都是Google搜 ...

  2. 简单的scrapy实战:爬取腾讯招聘北京地区的相关招聘信息

    简单的scrapy实战:爬取腾讯招聘北京地区的相关招聘信息 简单的scrapy实战:爬取腾讯招聘北京地区的相关招聘信息 系统环境:Fedora22(昨天已安装scrapy环境) 爬取的开始URL:ht ...

  3. SQL 处理空值

    问题: 在数据库中经常会有为null和''的值的列,在查询的时候,我们需要将它们转化成有效的值. 解决方案: 在emp表中的comm注释有的为null有的为'',在查询的时候 我们希望没有注释的显示为 ...

  4. symfony2-不同bundle的entity的一对多关系

    重点:其实和普通一个bundle中一样,只是把entity地址写全就行. 例子: 表commentone (多方) 表shopone(一方) 在Userbundle中的Commentone实体对应关系

  5. PHP合并数组+与array_merge的区别分析

    主要区别是两个或者多个数组中如果出现相同键名,键名分为字符串或者数字,需要注意 1)键名为数字时,array_merge()不会覆盖掉原来的值,但+合并数组则会把最先出现的值作为最终结果返回,而把后面 ...

  6. jdk、jre与jvm的区别与联系

    为了学习数据库,重装了系统,之前前一直在用eclipse,现在准备换成myeclipse,这之前当然需要重新设置环境变量,顺手写下有关jdk.jre与jvm的区别与联系以供交流参考. 首先来说一下JD ...

  7. Uva 1612 Guess

    Thinking about it: 题目要求最后一名(也就是第N位)的分数要尽量的大,那么就一定要求第N-1名的分数也要尽量大.假如N-1可以取400和500,那么N-1应该取500,如果取400, ...

  8. passwordauthentication yes

    ssh ip disconnected:no supported authentication methods available(server sent:publickey,gssapi-keyex ...

  9. java 执行bat文件 并输出信息

    import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.i ...

  10. The Building Blocks-Components of EA part 1- Information and Strategy

    1. Zachman Framework Presented as matrix of Rows and Columns representing domain of interest and lev ...