poj 2728 Desert King(最小比率生成树,迭代法)
引用别人的解释:
题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,
建造水管距离为坐标之间的欧几里德距离(好象是叫欧几里德距离吧),费用为海拔之差
现在要求方案使得费用与距离的比值最小
很显然,这个题目是要求一棵最优比率生成树,
概念
有带权图G, 对于图中每条边e[i], 都有benifit[i](收入)和cost[i](花费), 我们要求的是一棵生成树T, 它使得 ∑(benifit[i]) / ∑(cost[i]), i∈T 最大(或最小).
这显然是一个具有现实意义的问题.
解法之一 0-1分数规划
设x[i]等于1或0, 表示边e[i]是否属于生成树.
则我们所求的比率 r = ∑(benifit[i] * x[i]) / ∑(cost[i] * x[i]), 0≤i<m .
为了使 r 最大, 设计一个子问题---> 让 z = ∑(benifit[i] * x[i]) - l * ∑(cost[i] * x[i]) = ∑(d[i] * x[i]) 最大 (d[i] = benifit[i] - l * cost[i]) , 并记为z(l). 我们可以兴高采烈地把z(l)看做以d为边权的最大生成树的总权值.
然后明确两个性质:
1. z单调递减
证明: 因为cost为正数, 所以z随l的减小而增大.
2. z( max(r) ) = 0
证明: 若z( max(r) ) < 0, ∑(benifit[i] * x[i]) - max(r) * ∑(cost[i] * x[i]) < 0, 可化为 max(r) < max(r). 矛盾;
若z( max(r) ) >= 0, 根据性质1, 当z = 0 时r最大.
到了这个地步, 七窍全已打通, 喜欢二分的上二分, 喜欢Dinkelbach的就Dinkelbach.
复杂度
时间 O( O(MST) * log max(r) )
空间 O( O(MST) )
迭代+prim
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<limits.h>
#define MAX 1100
double x[MAX],y[MAX],z[MAX];
double cost[MAX][MAX],dist[MAX][MAX];
int n;
double prim(double);
int main(void)
{
int i,j;
while(scanf("%d",&n)&&n){
for(i=;i<=n;i++){//读取数据
scanf("%lf%lf%lf",&x[i],&y[i],&z[i]);
}
//处理 任意点之间的长度和价值
for(i=;i<=n;i++){
for(j=i+;j<=n;j++){
double d=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
dist[i][j]=dist[j][i]=sqrt(d);
double c=z[i]-z[j];
if(c<) c=-c;
cost[i][j]=cost[j][i]=c;
}
}
//判断给定的rate是否在误差之内
double a=,b=; //初始r为0
while()
{
b = prim(a);
if(fabs(a-b)<1e-) break;
a=b;
}
printf("%.3lf\n",b); }
return ;
}
double prim(double p)
{
int visit[MAX],father[MAX];
double dis[MAX];
int i,j;
//访问数组初始化
memset(visit,,sizeof(visit));
visit[]=;
//对已加入的最小生成树的顶点集合 计算它的父节点
for(i=;i<=n;i++){
dis[i]=cost[][i]-p*dist[][i];
father[i]=;
} int k=;
double totalCost=,totalDist=;
//prim求最小生成树
for(i=;i<n;i++){
k=;
double mincost=INT_MAX;//最大值,最好是这个 for(j=;j<=n;j++){
if(!visit[j]&&dis[j]<mincost) {
mincost=dis[j];k=j;
}
} if(k==) break; visit[k]=;
totalCost+=cost[ father[k] ][k];
totalDist+=dist[ father[k] ][k]; for(j=;j<=n;j++){
double h=cost[k][j]-p*dist[k][j];
if(!visit[j]&&dis[j]>h){
dis[j]=h;
father[j]=k;
}
} }
return totalCost/totalDist;
}
poj 2728 Desert King(最小比率生成树,迭代法)的更多相关文章
- poj 2728 Desert King (最小比例生成树)
http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissio ...
- Desert King 最小比率生成树 (好题)
Description David the Great has just become the king of a desert country. To win the respect of his ...
- poj 2728 Desert King (最优比率生成树)
Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS Memory Limit: 65536K Descripti ...
- POJ 2728 Desert King(最优比例生成树 二分 | Dinkelbach迭代法)
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 25310 Accepted: 7022 Desc ...
- POJ 2728 Desert King 最优比率生成树
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 20978 Accepted: 5898 [Des ...
- POJ 2728 Desert King(最优比率生成树 01分数规划)
http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...
- POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)
[题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...
- POJ 2728 Desert King (最优比率树)
题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目 ...
- POJ 2728 Desert King (01分数规划)
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions:29775 Accepted: 8192 Descr ...
随机推荐
- Critical Log Review Checklist for Security Incidents
Critical Log Review Checklist for Security Incidents This cheat sheet presents a checklist for revie ...
- chrome 下的 proxy 插件安装
Install “Proxy SwitchyOmega” extensions for chrome.
- append与after
apend与apendTo就如同after与insertAfter,表达意思相同,表达不同.A.after(B)=B.insertAfter(A).apend在元素里面添加,after在元素外面添加. ...
- 用正则匹配一串字符串中的ip地址
IP地址有4段组成,每一段数字的范围为0-255,在一段文本中提取ip地址可以这样 $src = 'src = alsdlk ks sdf2.3.3.4 234.193.1.120.1232 d.23 ...
- javaScript操作select
注意:Option中的O是要大写的,不然语法报错 1.动态创建select function createSelect(){ var mySelect = document.createE ...
- JavaScript之面向对象学习六原型模式创建对象的问题,组合使用构造函数模式和原型模式创建对象
一.仔细分析前面的原型模式创建对象的方法,发现原型模式创建对象,也存在一些问题,如下: 1.它省略了为构造函数传递初始化参数这个环节,结果所有实例在默认的情况下都将取得相同的属性值,这还不是最大的问题 ...
- samba服务器的安装及配置
安装前首先查看服务器是否已经安装samba服务器 [root@bogon home]# rpm -qa|grep samba system-config-samba-docs-1.0.9-1.el6. ...
- C语言函数可变参数列表
C语言允许使用可变参数列表,我们常用的printf函数即为可变参数函数,C标准库提供了stdarg.h为我们提供了这方面支持:该头文件提供了一些类型和宏来支持可变参数列表,包括类型va_list,宏v ...
- linux php文件include失败 一个很神奇的问题
1. html生成失败,权限问题 前天用php生成模板,在windows上开发,include文件,读缓存写文件,顺风顺水,晚上写完后传到linux上html生成失败,发现文件和文件夹都没生成,网上查 ...
- BZOJ 1212: [HNOI2004]L语言( dp + trie )
因为单词很短...用trie然后每次dp暴力查找...用哈希+dp应该也是可以的.... ------------------------------------------------------- ...