B. New Year Permutation
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

User ainta has a permutation p1, p2, ..., pn. As the New Year is coming, he wants to make his permutation as pretty as possible.

Permutation a1, a2, ..., an is prettier than permutation b1, b2, ..., bn, if and only if there exists an integer k (1 ≤ k ≤ n) where a1 = b1, a2 = b2, ..., ak - 1 = bk - 1 and ak < bk all holds.

As known, permutation p is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an n × n binary matrixA, user ainta can swap the values of pi and pj (1 ≤ i, j ≤ ni ≠ j) if and only if Ai, j = 1.

Given the permutation p and the matrix A, user ainta wants to know the prettiest permutation that he can obtain.

Input

The first line contains an integer n (1 ≤ n ≤ 300) — the size of the permutation p.

The second line contains n space-separated integers p1, p2, ..., pn — the permutation p that user ainta has. Each integer between 1 and n occurs exactly once in the given permutation.

Next n lines describe the matrix A. The i-th line contains n characters '0' or '1' and describes the i-th row of A. The j-th character of the i-th line Ai, j is the element on the intersection of the i-th row and the j-th column of A. It is guaranteed that, for all integers i, j where 1 ≤ i < j ≤ nAi, j = Aj, i holds. Also, for all integers i where 1 ≤ i ≤ nAi, i = 0holds.

Output

In the first and only line, print n space-separated integers, describing the prettiest permutation that can be obtained.

Sample test(s)
Input
7
5 2 4 3 6 7 1
0001001
0000000
0000010
1000001
0000000
0010000
1001000
Output
1 2 4 3 6 7 5
Input
5
4 2 1 5 3
00100
00011
10010
01101
01010
Output
1 2 3 4 5
Note

In the first sample, the swap needed to obtain the prettiest permutation is: (p1, p7).

In the second sample, the swaps needed to obtain the prettiest permutation is (p1, p3), (p4, p5), (p3, p4).

A permutation p is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. The i-th element of the permutation p is denoted as pi. The size of the permutation p is denoted as n.

这题是给出交换矩阵,求交换完字典序最小

原来我是这样想的

n^2暴力枚举i<j,a[i]>a[j]的一对交换,换到最后没了就好了。这样每次至少减少1逆序对,做n次不就完了吗 恩才n^3可以接受

(阿连哭死在厕所)

妈蛋当时我到底在想什么……逆序对个数是n^2啊……要n^4不爆才怪

我们发现如果a[i]、a[j]可以互换,那么i和j是连通的。在同一联通块中的元素都是可以互换的

联通块可以直接用并查集或者floyd搞出来

然后从小到大枚举每一个位置,用它所在联通块中没取到的最小元素填进去

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<set>
#include<map>
#include<ctime>
#include<iomanip>
#define LL long long
#define inf 0x7ffffff
#define N 200010
using namespace std;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n;
int a[1010];
bool mrk[1010];
bool p[1010][1010];
int main()
{
n=read();
for (LL i=1;i<=n;i++)a[i]=read();
for (int i=1;i<=n;i++)
{
char ch[1010];scanf("%s",ch+1);
for (int j=1;j<=n;j++)
if (ch[j]=='1')p[i][j]=1;
p[i][i]=1;
}
for (int k=1;k<=n;k++)
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
if(p[i][k]&&p[k][j])p[i][j]=1;
memset(mrk,1,sizeof(mrk));
for (int i=1;i<=n;i++)
{
int mn=inf,res=0;
for (int j=1;j<=n;j++)
if (mrk[j]&&p[i][j]&&a[j]<mn)
{
mn=a[j];
res=j;
}
mrk[res]=0;
printf("%d ",mn);
}
return 0;
}

cf500B New Year Permutation的更多相关文章

  1. Floyd算法详解

    Floyd本质上使用了DP思想,我们定义\(d[k][x][y]\)为允许经过前k个节点时,节点x与节点y之间的最短路径长度,显然初始值应该为\(d[k][x][y] = +\infin (k, x, ...

  2. Codeforces 500B. New Year Permutation[连通性]

    B. New Year Permutation time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  4. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  5. [LeetCode] Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome. For example," ...

  6. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  7. [LeetCode] Next Permutation 下一个排列

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  8. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  9. UVA11525 Permutation[康托展开 树状数组求第k小值]

    UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+ ...

随机推荐

  1. linux用户权限相关命令

    1.创建组 groupadd test     修改组 groupmod -n test2 test 将名字改为test2     删除组 groupdel test     查看组 groups r ...

  2. Android批量图片载入经典系列——使用LruCache、AsyncTask缓存并异步载入图片

    一.问题描写叙述 使用LruCache.AsyncTask实现批量图片的载入并达到下列技术要求 1.从缓存中读取图片,若不在缓存中,则开启异步线程(AsyncTask)载入图片,并放入缓存中 2.及时 ...

  3. 零基础学习IOS开发(二)- 使用cocos2d-x3.0 执行Hello world

    关于开发框架,依据网上检索来的信息,感觉cocos2d-x的ios游戏开发框架非常不错,并且有非常强的可移植性,因此打算尝试一下. 截止写下此文章,最新的cocos2d-x的版本号为v3.0稳定版(几 ...

  4. [AngularJS] New in Angular 1.5 ng-animate-swap

    <!DOCTYPE html> <html ng-app="MyApplication"> <head> <link rel=" ...

  5. 外键约束列并没有导致大量建筑指数library cache pin/library cache lock

    外键约束列并没有导致大量建筑指数library cache pin/library cache lock 清除一个100大数据表超过一百万线,发现已经运行了几个小时: delete B001.T_B1 ...

  6. TinyXml 快速入门(三)

    在<TinyXml 快速入门(二)>介绍使用tinyxml库获取xml文件声明,查询指定节点.删除指定节点的做法.在本文中继续介绍修改指定节点和增加节点的做法. 修改节点其实和查询指定节点 ...

  7. MySQL(11):存储引擎

    1.存储引擎是什么?       MySQL中的数据用各种不同的技术存储在文件(或者内存)中.这些技术中的每一种技术都使用不同的存储机制.索引技巧.锁定水平并且最终提供广泛的不同的功能和能力.通过选择 ...

  8. 安装VS2013的离线MSDN帮助文档

    作为vs的初学者,安装帮助文档有利于快速掌握.net的基本语法,对于摸索学习的同学帮助很大. VS2013和VS2012的帮助文档目前为止还是一样 下面是下载地址    http://www.micr ...

  9. sql Server 常用存储过程的优化

    优化存储过程有很多种方法,下面介绍最常用的7种. 1.使用SET NOCOUNT ON选项 我们使用SELECT语句时,除了返回对应的结果集外,还会返回相应的影响行数.使用SET NOCOUNT ON ...

  10. C++ Const成员函数

    一些成员函数改变对象,一些成员函数不改变对象. 例如:  int Point::GetY() { return yVal; }  这个函数被调用时,不改变Point对象,而下面的函数改变Point对象 ...