For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}. \eex$$ Use this to show that if $A,B$ are any two $n\times n$ matrices, then $$\bex \sex{\ba{cc} I&A\\ 0&I \ea}^{-1}\sex{\ba{cc} AB&0\\ B&0 \ea} \sex{\ba{cc} I&A\\ 0&I \ea}=\sex{\ba{cc} 0&0\\ B&BA \ea}. \eex$$ This implies that $AB$ and $BA$ have the same eigenvalues.(This last fact can be proved in another way as follows. If $B$ is invertible, then $AB=B^{-1}(BA)B$. So, $AB$ and $BA$ have the same eigenvalues. Since invertible matrices are dense in the space of matrices, and a general known fact in complex analysis is that the roots of a polynomial vary continuously with the coefficients, the above conclusion also holds in general.)

Solution. This follows from direct computations.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. selenium + python网页自动化测试环境搭建

    1.python的安装 ,这个不解释,exe文件运行安装即可,既然你选择python,相信你是熟悉python的,我安装目录C:\Python27 2.setuptools 的安装也非常简单,同样是e ...

  2. Qt库的静态编译

    一.准备软件1. MinGW     (C:\Qt\MinGW)http://pan.baidu.com/share/link?shareid=174269&uk=673227135这个文件解 ...

  3. ParentChildTest.java

    public class ParentChildTest { public static void main(String[] args) { Parent parent=new Parent(); ...

  4. find 与 tar命令连用

    find 与 tar命令连用 今天打包日志时,用 -type f -exec tar -cvf log.tar {} \; 发现只打包了最后一个文件,应该是tar的c参数,每次都创建一个新的文件,想了 ...

  5. MySQL Replication 常用架构

    转自: http://www.cnblogs.com/ggjucheng/archive/2012/11/13/2768879.html 前言 MySQLReplicaion本身是一个比较简单的架构, ...

  6. poj 2888 Magic Bracelet

    经典的有限制条件的Burnside计数+矩阵乘法!!! 对于这种限制条件的情况我们可以通过矩阵连乘得到,先初始化矩阵array[i][j]为1.如果颜色a和颜色b不能涂在相邻的珠子, 那么array[ ...

  7. hdu 1907 John

    很简单的博弈论问题!!(注意全是1时是特殊情况) 代码如下: #include<stdio.h> #include<iostream> using namespace std; ...

  8. MySQL提示:The server quit without updating PID file问题的解决办法

    错误如下: [root@snsgou mysql]# service mysql restartMySQL server PID file could not be found![失败]Startin ...

  9. Android EditView 阻止软键盘自动弹出

    最近再做一个查询内的小应用,界面最上面是一个EditText查询框,进行Activity后,总会弹起软键盘.这样就挡住了查询框下面的其他查询条件 控件,感觉很不友好.所以现在要做的就是在进入Activ ...

  10. ubuntu 解决依赖问题

    安装aptitude包管理器 然后用aptitude安装 sudo aptitude install ***