For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}. \eex$$ Use this to show that if $A,B$ are any two $n\times n$ matrices, then $$\bex \sex{\ba{cc} I&A\\ 0&I \ea}^{-1}\sex{\ba{cc} AB&0\\ B&0 \ea} \sex{\ba{cc} I&A\\ 0&I \ea}=\sex{\ba{cc} 0&0\\ B&BA \ea}. \eex$$ This implies that $AB$ and $BA$ have the same eigenvalues.(This last fact can be proved in another way as follows. If $B$ is invertible, then $AB=B^{-1}(BA)B$. So, $AB$ and $BA$ have the same eigenvalues. Since invertible matrices are dense in the space of matrices, and a general known fact in complex analysis is that the roots of a polynomial vary continuously with the coefficients, the above conclusion also holds in general.)

Solution. This follows from direct computations.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 可视化Windows服务定时任务

    思路:1.新建一个<Windows服务项目>,在里面建服务文件(可以多个),用来做要执行的任务. 2.新建一个<Windows窗体应用程序>,在这个程序里管理服务.如:安装.卸 ...

  2. Bootstrap 内核引用(一)

    方法一: Bootstrap CDN推荐 本站实例采用的是百度的静态资源库(http://cdn.code.baidu.com/)上的Bootstrap资源. 百度的静态资源库的 CDN 服务,访问速 ...

  3. iOS 基础 第五天(0811)

    0811 ARC ARC判断准则:只要没有强指针指向对象,就会释放对象 指针 指针分两种: 强指针:默认情况下,搜有的指针都是强指针 弱指针:week修饰(一个是控件,一个是delegate代理) 循 ...

  4. Integer自动装箱分析

    先看看下面的代码会输出什么: public static void main(String[] args) { Integer i = 127; Integer j = 128; Integer ii ...

  5. linux 历史命令用法(转)

    许多使用过Linux一段时间的人通过一些基础操作已经能够把Linux各方面基本玩转,但是如果没有经过系统学习的话就容易缺乏一些实战技巧.这系列文章介绍一些关于bash的能够提高效率的技巧,主要是关于历 ...

  6. 元素属性和js数组

    arrObj.push(数组元素) --增加arrObj.splice(index,howmany)--删除  一般howmany为1,  index,开始截取掉的位置,arrObj[index].P ...

  7. (转)火溶CEO王伟峰:Unity3D手机网游开发

    今天看到这篇文章,感觉很不错,尤其是那句“Unity3D的坑我觉得最严重的坑就是没有懂3D的程序员,把Unity当成Office用”. 转自http://blog.csdn.net/wwwang891 ...

  8. [转载].Net中如何操作IIS(源代码)

    ///***********************************************************///************** IIS控制管理类 1.0 Beta ** ...

  9. MySQL分区表(转)

    查看分区情况 SELECT * FROM information_schema.PARTITIONS WHERE table_name='table_name': PARTITION_NAME:分区的 ...

  10. mysql查看数据库命令

    mysql查看数据库命令 打开的数据库的命令 mysql> use mysql Database changed 查看数据库的命令 mysql> show databases; 查看数据表 ...