For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}. \eex$$ Use this to show that if $A,B$ are any two $n\times n$ matrices, then $$\bex \sex{\ba{cc} I&A\\ 0&I \ea}^{-1}\sex{\ba{cc} AB&0\\ B&0 \ea} \sex{\ba{cc} I&A\\ 0&I \ea}=\sex{\ba{cc} 0&0\\ B&BA \ea}. \eex$$ This implies that $AB$ and $BA$ have the same eigenvalues.(This last fact can be proved in another way as follows. If $B$ is invertible, then $AB=B^{-1}(BA)B$. So, $AB$ and $BA$ have the same eigenvalues. Since invertible matrices are dense in the space of matrices, and a general known fact in complex analysis is that the roots of a polynomial vary continuously with the coefficients, the above conclusion also holds in general.)

Solution. This follows from direct computations.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. objective-C 中两种实现动画的方法(转)

     转发自:http://wayne173.iteye.com/blog/1250232 第一种方法: [UIView beginAnimations:@"Curl"context: ...

  2. SC命令执行出现Access is denied

    在命令行中先是打开远程链接:net use \\computername(or ip)\ipc$ "password" /user:"[domain\]username& ...

  3. 17款免费的Bootstrap后台管理模板集合

    Bootstrap是Twitter推出的一个用于前端开发的开源工具包.是目前最受欢迎的前端框架之一.下面为大家推荐17个免费的Bootstrap后台管理界面模板. 1. Admin Lite     ...

  4. 深入js的面向对象学习篇——温故知新(一)

    在学习设计模式前必须要知道和掌握的***. 为类添加新方法: Function.prototype.method = function(name,fn) { this.prototype[name] ...

  5. <base target="_blank"/>

    <base target=_blank> 是将基本链接的目标框架都改为新页打开

  6. The 5th Zhejiang Provincial Collegiate Programming Contest---ProblemE:Easy Task

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2969 全场第一水题.我不知道怎么解释,看代码就好了... #include ...

  7. fiddler插件开发step by step 1

    Fiddler 是优秀的抓包工具,有着众多的优秀插件.Fiddler 软件是由C#语言开发的,运行在.net Framework 框架之上,所以我们也可以使用vs来开发自己的Fiddler插件,下面就 ...

  8. pflua:用Lua编写的高性能网络包过滤工具箱

    http://www.csdn.net/article/2014-09-05/2821568-pflua

  9. spring的组成

    ① Spring Core:核心容器,BeanFactory提供了组件生命周期的管理,组件的创建,装配,销毁等功能 SpringContext:ApplicationContext,扩展核心容器,提供 ...

  10. IOS开发基础

    http://blog.csdn.net/wokenshin/article/details/50292253 1.修改UI大小 2.设置颜色 3.禁止横屏 4.点击空白处隐藏键盘 5.弹出键盘时,后 ...