Palindrome
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 55018   Accepted: 19024

Description

A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome.

As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.

Input

Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.

Output

Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

Sample Input

5
Ab3bd

Sample Output

2

【题意】 给你一个长度为n的字符串,问最少再添多少字符能组成一个回文串;
【分析】
原字符串:Ab3bd
翻转后串:db3ba
二者有重复子串b3b,若想构成回文串,必须要再添加除重复子串外的其他字符。如:Adb3bdA 下面的问题就是求原字符串与翻转后串的最长公共子串,即LCS问题; 【LCS问题】
标记s1,s2字符位置变量i,j,令dp[i][j]为字符串s1[1~i],s2[1~j]的最长公共子串的长度;可知状态转移方程如下:
dp[i][j] = s1[i] == s2[j] ? dp[i-1][j-1] : max(dp[i-1][j], dp[i][j-1]); 【注意】
对于本题,n的范围是[3,5000],若直接开5000*5000的二维数组会内存超限(当然听说用short int会AC飘过); 【滚动数组】
滚动数组的作用在于优化空间。主要应用在递推或动态规划中(如01背包问题)。因为DP题目是一个自底向上的扩展过程,我们常常需要用到的是连续的解,前面的解往往可以舍去。所以用滚动数组优化是很有效的。利用滚动数组的话在n很大的情况下可以达到压缩存储的作用。 例如本题,dp[i][j]的值仅仅取决于dp[i-1][j-1], dp[i][j-1], dp[i-1][j];再直白地说,只需要保留下i-1时的状态,就可以求出i时的状态;所以dp完全可以只开一个2*5000的数组求解;
或许有人问j为什么不能也开成2? 这很好说明,因为j是随i不断循环的,i增加一个j全部循环一次,所以i在不断变化时需要不断j全部的信息,我们完全也可以令i随j不断变化,这样仅仅改变成5000*2,其他完全一样; 【代码】
 /*LCS*/

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
const int maxn = ;
char s1[maxn], s2[maxn];
int n;
int dp[][maxn]; void LCS()
{
memset(dp, , sizeof(dp)); for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
{
//cout << s1[i] << " " << s2[j] << endl;
if(s1[i] == s2[j])
dp[i%][j] = dp[(i-)%][j-]+;
else
dp[i%][j] = max(dp[(i-)%][j], dp[i%][j-]);
}
}
//cout << dp[n%2][n] << endl;
printf("%d\n", n-dp[n%][n]); } int main()
{
while(~scanf("%d", &n))
{
scanf("%s", s1+); for(int i = ; i < n; i++)
s2[i+] = s1[n-i]; LCS(); }
return ;
}

												

POJ 1159 - Palindrome (LCS, 滚动数组)的更多相关文章

  1. poj - 1159 - Palindrome(滚动数组dp)

    题意:一个长为N的字符串( 3 <= N <= 5000).问最少插入多少个字符使其变成回文串. 题目链接:http://poj.org/problem?id=1159 -->> ...

  2. POJ 1159 Palindrome(区间DP/最长公共子序列+滚动数组)

    Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 56150   Accepted: 19398 Desc ...

  3. POJ 1159 Palindrome(字符串变回文:LCS)

    POJ 1159 Palindrome(字符串变回文:LCS) id=1159">http://poj.org/problem? id=1159 题意: 给你一个字符串, 问你做少须要 ...

  4. poj 1159 Palindrome 【LCS】

    任意门:http://poj.org/problem?id=1159 解题思路: LCS + 滚动数组 AC code: #include <cstdio> #include <io ...

  5. hdu 1513 && 1159 poj Palindrome (dp, 滚动数组, LCS)

    题目 以前做过的一道题, 今天又加了一种方法 整理了一下..... 题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符. 方法一: 将该字符串与其反转求一次LCS,然后所求就是n减去 ...

  6. LCS(滚动数组) POJ 1159 Palindrome

    题目传送门 题意:一个字符串要变成回文串至少要插入多少个字符 分析:LCS,长度 - 原串和反串的最大相同长度就是要插入的个数.解释一下,当和反串相同时,在原串中已经是回文的部分了,那么减去LCS长度 ...

  7. HDU 1513 && POJ 1159 Palindrome (DP+LCS+滚动数组)

    题意:给定一个字符串,让你把它变成回文串,求添加最少的字符数. 析:动态规划是很明显的,就是没有了现思路,还是问的别人才知道,哦,原来要么写,既然是回文串, 那么最后正反都得是一样的,所以我们就正反求 ...

  8. 动态规划+滚动数组 -- POJ 1159 Palindrome

    给一字符串,问最少加几个字符能够让它成为回文串. 比方 Ab3bd 最少须要两个字符能够成为回文串 dAb3bAd 思路: 动态规划 DP[i][j] 意味着从 i 到 j 这段字符变为回文串最少要几 ...

  9. POJ 1159 回文LCS滚动数组优化

    详细解题报告可以看这个PPT 这题如果是直接开int 5000 * 5000  的空间肯定会MLE,优化方法是采用滚动数组. 原LCS转移方程 : dp[i][j] = dp[i - 1][j] + ...

随机推荐

  1. 采用现代Objective-C

    多年来,Objective-C语言已经有了革命性的发展.虽然核心理念和实践保持不变,但语言中的部分内容经历了重大的变化和改进.现代化的Objective-C在类型安全.内存管理.性能.和其他方面都得到 ...

  2. HiveContext VS SQLContext

    There are two ways to create context in Spark SQL: SqlContext:scala> import org.apache.spark.sql. ...

  3. ocp 1Z0-047 61-130题解析

    61. Evaluate the following SQL statements that are issued in the given order:CREATE TABLE emp(emp_no ...

  4. javascript表单(form)序列化

    function serialize(form){ var part =[]; var field = null; var i; var j; var len; var optLen; var opt ...

  5. oracle对序列的操作

    select t.*, t.rowid from tbl_type t order by t.id desc Select SEQ_TBL_TYPE_ID.NextVal From Dual; ; ; ...

  6. js两种创建对象方式

    js创建方法的两种方式 <%@ page language="java" contentType="text/html; charset=ISO-8859-1&qu ...

  7. Unity3D之Mecanim动画系统学习笔记(七):IK(反向动力学)动画

    什么是IK? IK(Inverse Kinematics)即反向动力学,即可以使用场景中的各种物体来控制和影响角色身体部位的运动,一般来说骨骼动画都是传统的从父节点到子节点的带动方式(即正向动力学), ...

  8. CentOS服务器配置发送邮件服务

    CentOS服务器配置发送邮件服务 lsb_release -a 查看linux系统版本 在CentOS6以上版本自带mailx版本12.4 rpm -qa | grep mailx 查看系统自带的m ...

  9. Android内存优化(使用SparseArray和ArrayMap代替HashMap)

    在Android开发时,我们使用的大部分都是Java的api,比如HashMap这个api,使用率非常高,但是对于Android这种对内存非常敏感的移动平台,很多时候使用一些java的api并不能达到 ...

  10. ADO.NET 快速入门(五):从 DataSet 更新数据库

    该主题说明了如何使用 DataSet 在数据库中更新数据.你依然可以直接使用 SqlCommand 在数据库中插入.更新.和删除数据,记住这一点也很重要.理解“从数据库填充DataSet”涵盖的概念有 ...