Description

在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大。
Input

第1行一个正整数N,接下来N行,每行2个数x,y,表示该点的横坐标和纵坐标。
Output

最大的多边形面积,答案精确到小数点后3位。
Sample Input
5
0 0
1 0
1 1
0 1
0.5 0.5
Sample Output
1.000

HINT

数据范围 n<=2000, |x|,|y|<=100000

先求凸包

然后枚举四边形的对角线,分别找到距离最远的两个点更新答案(这两个点都是单调的),总复杂度是O(n^2)的

哪里写挫了,超慢,总时间1600ms

 const
maxn=;
type
point=record
x,y:double;
end;
var
a:array[..maxn]of point;
n:longint;
min:point; function cj(a,b,c:point):double;
begin
exit((a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y));
end; procedure swap(var x,y:point);
var
t:point;
begin
t:=x;x:=y;y:=t;
end; procedure sort(l,r:longint);
var
i,j:longint;
y:point;
begin
i:=l;
j:=r;
y:=a[(l+r)>>];
repeat
while cj(y,a[i],min)< do
inc(i);
while cj(y,a[j],min)> do
dec(j);
if i<=j then
begin
swap(a[i],a[j]);
inc(i);
dec(j);
end;
until i>j;
if i<r then sort(i,r);
if j>l then sort(l,j);
end; procedure init;
var
i:longint;
begin
read(n);
min.x:=maxlongint;
min.y:=maxlongint;
for i:= to n do
begin
read(a[i].x,a[i].y);
if (a[i].x<min.x) or ((a[i].x=min.x) and (a[i].y<min.y)) then min:=a[i];
end;
i:=n;
while i> do
begin
if (a[i].x=min.x) and (a[i].y=min.y) then
begin
a[i]:=a[n];
dec(n);
end
else dec(i);
end;
sort(,n);
inc(n);
a[n]:=min;
a[]:=min;
end; var
q:array[..maxn]of longint;
f:array[..maxn,..]of double;
tot,lasta,lastb:longint;
ans:double; function up(var x:double;y:double):boolean;
begin
if x<y then
begin
x:=y;
exit(true);
end;
exit(false);
end; function down(var x:double;y:double):boolean;
begin
if x>y then
begin
x:=y;
exit(true);
end;
exit(false);
end; procedure work;
var
i,j:longint;
begin
for i:= to n do
begin
while (tot>) and (cj(a[i],a[q[tot]],a[q[tot-]])>=) do
dec(tot);
inc(tot);
q[tot]:=i;
end;
for i:= to tot- do
begin
f[i+,]:=-maxlongint;
f[i+,]:=;
for j:= to n do
if up(f[i+,],cj(a[q[i+]],a[q[j]],a[q[i]])) then lasta:=j;
lastb:=i;
for j:=i+ to tot do
begin
f[j,]:=cj(a[q[j]],a[q[lasta]],a[q[i]]);
f[j,]:=cj(a[q[j]],a[q[lastb]],a[q[i]]);
while up(f[j,],cj(a[q[j]],a[q[lasta mod tot+]],a[q[i]])) do
lasta:=lasta mod tot+;
while down(f[j,],cj(a[q[j]],a[q[lastb mod tot+]],a[q[i]])) do
lastb:=lastb mod tot+;
up(ans,f[j,]-f[j,]);
end;
end;
writeln(ans/::);
end; begin
init;
work;
end.

1069: [SCOI2007]最大土地面积 - BZOJ的更多相关文章

  1. bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2277  Solved: 853[Submit][Stat ...

  2. BZOJ 1069: [SCOI2007]最大土地面积 [旋转卡壳]

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2978  Solved: 1173[Submit][Sta ...

  3. BZOJ 1069: [SCOI2007]最大土地面积(旋转卡壳)

    题目链接~ 1069: [SCOI2007]最大土地面积 思路很简单,极角排序求完凸包后,在凸包上枚举对角线,然后两边分别来两个点旋转卡壳一下,搞定! 不过计算几何的题目就是这样,程序中间的处理还是比 ...

  4. 1069: [SCOI2007]最大土地面积

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2961  Solved: 1162[Submit][Sta ...

  5. 【BZOJ】1069: [SCOI2007]最大土地面积(凸包+旋转卡壳)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1069 显然这四个点在凸包上,然后枚举两个点找上下最大的三角形即可. 找三角形表示只想到三分QAQ.. ...

  6. ●BZOJ 1069 [SCOI2007]最大土地面积

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1069 题解: 计算几何,凸包,旋转卡壳 其实和这个题差不多,POJ 2079 Triangl ...

  7. bzoj 1069 [SCOI2007]最大土地面积——旋转卡壳

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1069 发现 n 可以 n^2 .所以枚举对角线,分开的两部分三角形就可以旋转卡壳了. 注意坐 ...

  8. [BZOJ]1069: [SCOI2007]最大土地面积

    题目大意:给出二维平面上n个点,求最大的由这些点组成的四边形面积.(n<=2000) 思路:求出凸包后旋转卡壳枚举对踵点对作为四边形的对角线,枚举或二分另外两个点,复杂度O(n^2)或O(nlo ...

  9. bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳

    题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...

随机推荐

  1. kettle菜鸟学习笔记1----相关准备知识

    最近导师让给师弟师妹做个关于kettle的培训,瞬间囧了,kettle我也只是简单学过,连皮毛都算不上,而且,上次使用kettle已然是去年的事了…… 没办法,只好重新学习下,好在之前写了几个文档,也 ...

  2. yarn.resourcemanager.ha.id设置

    resourcemanager启动报错,其中一个启动成功,另一个启动报8088端口被成功启动的rm占用 2016-11-18 17:08:49,478 INFO org.apache.zookeepe ...

  3. Microsoft SQL2000 错误代码 (@@error)

    Microsoft SQL 2000 错误代码(@@error) 0 操作成功完成.  1 功能错误.  2 系统找不到指定的文件.  3 系统找不到指定的路径.  4 系统无法打开文件.  5 拒绝 ...

  4. Linux 基本命令学习笔记

    1. 文件管理 Ø touch  新建文件.例: touch test.txt  新建一个test.txt 文件. Ø cp 复制文件.例:cp ./user_one/test_one  ./user ...

  5. web.config connectionStrings 数据库连接字符串的解释

    先来看一下默认的连接SQL Server数据库配置<connectionStrings>   <add name="LocalSqlServer" connect ...

  6. 【学习笔记】【C语言】第一个C程序

    1.新建C语言程序 *打开Xcode  *新建文件  *选择C语言程序  *输入程序名称  *选择存放路径  *创建完成后  2.也可以用终端来创建  通过指令来创建.c文件   3.编写代码  4. ...

  7. Codevs 1083 Cantor表

     时间限制: 1 s   空间限制: 128000 KB   题目等级 : 白银 Silver 题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的 ...

  8. asp.net mvc常用的数据注解和验证以及entity framework数据映射

    终于有时间整理一下asp.net mvc 和 entity framework 方面的素材了. 闲话少说,步入正题: 下面是model层的管理员信息表,也是大伙比较常用到的,看看下面的代码大伙应该不会 ...

  9. 【原】Infragistics.Win.UltraWinGrid.UltraGrid 增加行号

    private void ultraGrid1_InitializeLayout(object sender, Infragistics.Win.UltraWinGrid.InitializeLayo ...

  10. html设置360兼容/极速模式

    由于众所周知的情况,国内的主流浏览器都是双核浏览器:基于Webkit内核用于常用网站的高速浏览.基于IE的内核用于兼容网银.旧版网站.以360的几款浏览器为例,我们优先通过Webkit内核渲染主流的网 ...