java CMS gc解析
转载: http://www.blogjava.net/killme2008/archive/2009/09/22/295931.html
CMS,全称Concurrent Low Pause
Collector,是jdk1.4后期版本开始引入的新gc算法,在jdk5和jdk6中得到了进一步改进,它的主要适合场景是对响应时间的重要性需求
大于对吞吐量的要求,能够承受垃圾回收线程和应用线程共享处理器资源,并且应用中存在比较多的长生命周期的对象的应用。CMS是用于对tenured
generation的回收,也就是年老代的回收,目标是尽量减少应用的暂停时间,减少full
gc发生的几率,利用和应用程序线程并发的垃圾回收线程来标记清除年老代。在我们的应用中,因为有缓存的存在,并且对于响应时间也有比较高的要求,因此希
望能尝试使用CMS来替代默认的server型JVM使用的并行收集器,以便获得更短的垃圾回收的暂停时间,提高程序的响应性。
CMS并非没有暂停,而是用两次短暂停来替代串行标记整理算法的长暂停,它的收集周期是这样:
初始标记(CMS-initial-mark) -> 并发标记(CMS-concurrent-mark) ->
重新标记(CMS-remark) -> 并发清除(CMS-concurrent-sweep)
->并发重设状态等待下次CMS的触发(CMS-concurrent-reset)。
其中的1,3两个步骤需要暂停所有的应用程序线程的。第一次暂停从root对象开始标记存活的对象,这个阶段称为初始标记;第二次暂停是在并发标记之后,
暂停所有应用程序线程,重新标记并发标记阶段遗漏的对象(在并发标记阶段结束后对象状态的更新导致)。第一次暂停会比较短,第二次暂停通常会比较长,并且
remark这个阶段可以并行标记。
而并发标记、并发清除、并发重设阶段的所谓并发,是指一个或者多个垃圾回收线程和应用程序线程并发地运行,垃圾回收线程不会暂停应用程序的执行,如果你有多于一个处理器,那么并发收集线程将与应用线程在不同的处理器上运行,显然,这样的开销就是会降低应用的吞吐量。Remark阶段的并行,是指暂停了所有应用程序后,启动一定数目的垃圾回收进程进行并行标记,此时的应用线程是暂停的。
CMS的young generation的回收采用的仍然是并行复制收集器,这个跟Paralle gc算法是一致的。
下面是参数介绍和遇到的问题总结,
1、启用CMS:-XX:+UseConcMarkSweepGC。 咳咳,这里犯过一个低级错误,竟然将+号写成了-号
2。CMS默认启动的回收线程数目是 (ParallelGCThreads + 3)/4)
,如果你需要明确设定,可以通过-XX:ParallelCMSThreads=20来设定,其中ParallelGCThreads是年轻代的并行收集线程数
3、CMS是不会整理堆碎片的,因此为了防止堆碎片引起full gc,通过会开启CMS阶段进行合并碎片选项:-XX:+UseCMSCompactAtFullCollection,开启这个选项一定程度上会影响性能,阿宝的blog里说也许可以通过配置适当的CMSFullGCsBeforeCompaction来调整性能,未实践。
4.为了减少第二次暂停的时间,开启并行remark: -XX:+CMSParallelRemarkEnabled,如果remark还是过长的话,可以开启-XX:+CMSScavengeBeforeRemark选项,强制remark之前开始一次minor gc,减少remark的暂停时间,但是在remark之后也将立即开始又一次minor gc。
5.为了避免Perm区满引起的full gc,建议开启CMS回收Perm区选项:
+CMSPermGenSweepingEnabled -XX:+CMSClassUnloadingEnabled
6.默认CMS是在tenured generation沾满68%的时候开始进行CMS收集,如果你的年老代增长不是那么快,并且希望降低CMS次数的话,可以适当调高此值:
-XX:CMSInitiatingOccupancyFraction=80
这里修改成80%沾满的时候才开始CMS回收。
7.年轻代的并行收集线程数默认是(ncpus <= 8) ? ncpus : 3 + ((ncpus * 5) / 8),如果你希望设定这个线程数,可以通过-XX:ParallelGCThreads= N 来调整。
8.进入重点,在初步设置了一些参数后,例如:
-XX:MaxPermSize=64m -XX:-UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection
-XX:+CMSParallelRemarkEnabled
需要在生产环境或者压测环境中测量这些参数下系统的表现,这时候需要打开GC日志查看具体的信息,因此加上参数:
-verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:/home/test/logs/gc.log
在运行相当长一段时间内查看CMS的表现情况,CMS的日志输出类似这样:
4391.352: [CMS-concurrent-mark-start]
4391.779: [CMS-concurrent-mark: 0.427/0.427 secs] [Times: user=1.24 sys=0.31, real=0.42 secs]
4391.779: [CMS-concurrent-preclean-start]
4391.821: [CMS-concurrent-preclean: 0.040/0.042 secs] [Times: user=0.13 sys=0.03, real=0.05 secs]
4391.821: [CMS-concurrent-abortable-preclean-start]
4392.511: [CMS-concurrent-abortable-preclean: 0.349/0.690 secs] [Times: user=2.02 sys=0.51, real=0.69 secs]
CMS-remark: 655734K(1310720K)] 766736K(1546688K), 0.0932010 secs] [Times: user=0.17 sys=0.00, real=0.09 secs]
4392.609: [CMS-concurrent-sweep-start]
4394.310: [CMS-concurrent-sweep: 1.595/1.701 secs] [Times: user=4.78 sys=1.05, real=1.70 secs]
4394.310: [CMS-concurrent-reset-start]
4394.364: [CMS-concurrent-reset: 0.054/0.054 secs] [Times: user=0.14 sys=0.06, real=0.06 secs]
其中可以看到CMS-initial-mark阶段暂停了0.0303050秒,而CMS-remark阶段暂停了0.0932010秒,因此两次暂停的总共时间是0.123506秒,也就是123毫秒左右。两次短暂停的时间之和在200以下可以称为正常现象。
但是你很可能遇到两种fail引起full gc:Prommotion failed和Concurrent mode failed。
Prommotion failed的日志输出大概是这样:
2166784K), 9.2214860 secs] 1458785K->1120688K(2520704K), 9.4584090 secs]
这个问题的产生是由于救助空间不够,从而向年老代转移对象,年老代没有足够的空间来容纳这些对象,导致一次full gc的产生。解决这个问题的办法有两种完全相反的倾向:增大救助空间、增大年老代或者去掉救助空间。
增大救助空间就是调整-XX:SurvivorRatio参数,这个参数是Eden区和Survivor区的大小比值,默认是32,也就是说Eden区是
Survivor区的32倍大小,要注意Survivo是有两个区的,因此Surivivor其实占整个young
genertation的1/34。调小这个参数将增大survivor区,让对象尽量在survitor区呆长一点,减少进入年老代的对象。去掉救助空
间的想法是让大部分不能马上回收的数据尽快进入年老代,加快年老代的回收频率,减少年老代暴涨的可能性,这个是通过将-XX:SurvivorRatio
设置成比较大的值(比如65536)来做到。在我们的应用中,将young
generation设置成256M,这个值相对来说比较大了,而救助空间设置成默认大小(1/34),从压测情况来看,没有出现prommotion
failed的现象,年轻代比较大,从GC日志来看,minor gc的时间也在5-20毫秒内,还可以接受,因此暂不调整。
Concurrent mode failed的产生是由于CMS回收年老代的速度太慢,导致年老代在CMS完成前就被沾满,引起full gc,避免这个现象的产生就是调小-XX:CMSInitiatingOccupancyFraction参数的值,让CMS更早更频繁的触发,降低年老代被沾满的可能。我们的应用暂时负载比较低,在生产环境上年老代的增长非常缓慢,因此暂时设置此参数为80。在压测环境下,这个参数的表现还可以,没有出现过Concurrent mode failed。
最新评论
|
首先感谢阿宝同学的帮助,我才对这个gc算法的调整有了一定的认识,而不是停留在过去仅仅了解的阶段。在读过sun的文档和跟阿宝讨论之后,做个小小的总结。 CMS,全称Concurrent Low Pause Collector,是jdk1.4后期版本开始引入的新gc算法,在jdk5和jdk6中得到了进一步改进,它的主要适合场景是对响应时间的重要性需求 大于对吞吐量的要求,能够承受垃圾回收线程和应用线程共享处理器资源,并且应用中存在比较多的长生命周期的对象的应用。CMS是用于对tenured generation的回收,也就是年老代的回收,目标是尽量减少应用的暂停时间,减少full gc发生的几率,利用和应用程序线程并发的垃圾回收线程来标记清除年老代。在我们的应用中,因为有缓存的存在,并且对于响应时间也有比较高的要求,因此希 望能尝试使用CMS来替代默认的server型JVM使用的并行收集器,以便获得更短的垃圾回收的暂停时间,提高程序的响应性。 CMS并非没有暂停,而是用两次短暂停来替代串行标记整理算法的长暂停,它的收集周期是这样: 初始标记(CMS-initial-mark) -> 并发标记(CMS-concurrent-mark) -> 重新标记(CMS-remark) -> 并发清除(CMS-concurrent-sweep) ->并发重设状态等待下次CMS的触发(CMS-concurrent-reset)。 其中的1,3两个步骤需要暂停所有的应用程序线程的。第一次暂停从root对象开始标记存活的对象,这个阶段称为初始标记;第二次暂停是在并发标记之后, 暂停所有应用程序线程,重新标记并发标记阶段遗漏的对象(在并发标记阶段结束后对象状态的更新导致)。第一次暂停会比较短,第二次暂停通常会比较长,并且 remark这个阶段可以并行标记。 而并发标记、并发清除、并发重设阶段的所谓并发,是指一个或者多个垃圾回收线程和应用程序线程并发地运行,垃圾回收线程不会暂停应用程序的执行,如果你有多于一个处理器,那么并发收集线程将与应用线程在不同的处理器上运行,显然,这样的开销就是会降低应用的吞吐量。Remark阶段的并行,是指暂停了所有应用程序后,启动一定数目的垃圾回收进程进行并行标记,此时的应用线程是暂停的。 CMS的young generation的回收采用的仍然是并行复制收集器,这个跟Paralle gc算法是一致的。 下面是参数介绍和遇到的问题总结, 1、启用CMS:-XX:+UseConcMarkSweepGC。 咳咳,这里犯过一个低级错误,竟然将+号写成了-号 2。CMS默认启动的回收线程数目是 (ParallelGCThreads + 3)/4) ,如果你需要明确设定,可以通过-XX:ParallelCMSThreads=20来设定,其中ParallelGCThreads是年轻代的并行收集线程数 3、CMS是不会整理堆碎片的,因此为了防止堆碎片引起full gc,通过会开启CMS阶段进行合并碎片选项:-XX:+UseCMSCompactAtFullCollection,开启这个选项一定程度上会影响性能,阿宝的blog里说也许可以通过配置适当的CMSFullGCsBeforeCompaction来调整性能,未实践。 4.为了减少第二次暂停的时间,开启并行remark: -XX:+CMSParallelRemarkEnabled,如果remark还是过长的话,可以开启-XX:+CMSScavengeBeforeRemark选项,强制remark之前开始一次minor gc,减少remark的暂停时间,但是在remark之后也将立即开始又一次minor gc。 5.为了避免Perm区满引起的full gc,建议开启CMS回收Perm区选项: 6.默认CMS是在tenured generation沾满68%的时候开始进行CMS收集,如果你的年老代增长不是那么快,并且希望降低CMS次数的话,可以适当调高此值: 这里修改成80%沾满的时候才开始CMS回收。 7.年轻代的并行收集线程数默认是(ncpus <= 8) ? ncpus : 3 + ((ncpus * 5) / 8),如果你希望设定这个线程数,可以通过-XX:ParallelGCThreads= N 来调整。 8.进入重点,在初步设置了一些参数后,例如: -server -Xms1536m -Xmx1536m -XX:NewSize=256m -XX:MaxNewSize=256m -XX:PermSize=64m
-XX:MaxPermSize=64m -XX:-UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection -XX:+CMSParallelRemarkEnabled 需要在生产环境或者压测环境中测量这些参数下系统的表现,这时候需要打开GC日志查看具体的信息,因此加上参数: -verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:/home/test/logs/gc.log 在运行相当长一段时间内查看CMS的表现情况,CMS的日志输出类似这样: CMS-initial-mark: 655374K(1310720K)] 662197K(1546688K), 0.0303050 secs] [Times: user=0.02 sys=0.02, real=0.03 secs]
4391.352: [CMS-concurrent-mark-start] 4391.779: [CMS-concurrent-mark: 0.427/0.427 secs] [Times: user=1.24 sys=0.31, real=0.42 secs] 4391.779: [CMS-concurrent-preclean-start] 4391.821: [CMS-concurrent-preclean: 0.040/0.042 secs] [Times: user=0.13 sys=0.03, real=0.05 secs] 4391.821: [CMS-concurrent-abortable-preclean-start] 4392.511: [CMS-concurrent-abortable-preclean: 0.349/0.690 secs] [Times: user=2.02 sys=0.51, real=0.69 secs] CMS-remark: 655734K(1310720K)] 766736K(1546688K), 0.0932010 secs] [Times: user=0.17 sys=0.00, real=0.09 secs] 4392.609: [CMS-concurrent-sweep-start] 4394.310: [CMS-concurrent-sweep: 1.595/1.701 secs] [Times: user=4.78 sys=1.05, real=1.70 secs] 4394.310: [CMS-concurrent-reset-start] 4394.364: [CMS-concurrent-reset: 0.054/0.054 secs] [Times: user=0.14 sys=0.06, real=0.06 secs] 其中可以看到CMS-initial-mark阶段暂停了0.0303050秒,而CMS-remark阶段暂停了0.0932010秒,因此两次暂停的总共时间是0.123506秒,也就是123毫秒左右。两次短暂停的时间之和在200以下可以称为正常现象。 但是你很可能遇到两种fail引起full gc:Prommotion failed和Concurrent mode failed。 Prommotion failed的日志输出大概是这样: [ParNew (promotion failed): 320138K->320138K(353920K), 0.2365970 secs]42576.951: [CMS: 1139969K->1120688K(
2166784K), 9.2214860 secs] 1458785K->1120688K(2520704K), 9.4584090 secs] 这个问题的产生是由于救助空间不够,从而向年老代转移对象,年老代没有足够的空间来容纳这些对象,导致一次full gc的产生。解决这个问题的办法有两种完全相反的倾向:增大救助空间、增大年老代或者去掉救助空间。 Concurrent mode failed的产生是由于CMS回收年老代的速度太慢,导致年老代在CMS完成前就被沾满,引起full gc,避免这个现象的产生就是调小-XX:CMSInitiatingOccupancyFraction参数的值,让CMS更早更频繁的触发,降低年老代被沾满的可能。我们的应用暂时负载比较低,在生产环境上年老代的增长非常缓慢,因此暂时设置此参数为80。在压测环境下,这个参数的表现还可以,没有出现过Concurrent mode failed。 参考资料: 评论# re: CMS gc实践总结 回复 更多评论2009-09-22 11:42 by Scorpio Zhen 不错,更深入的学习gc方面的知识 新用户注册 刷新评论列表
|
Powered by: BlogJava |
java CMS gc解析的更多相关文章
- Java中9种常见的CMS GC问题分析与解决
1. 写在前面 | 本文主要针对 Hotspot VM 中"CMS + ParNew"组合的一些使用场景进行总结.重点通过部分源码对根因进行分析以及对排查方法进行总结,排查过程会省 ...
- Java 面试知识点解析(三)——JVM篇
前言: 在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大 ...
- 2019年 Java 面试题解析
2019年 Java 面试题解析 转载地址:https://www.cnblogs.com/Zz-maker/p/11193930.html 作者: Zz_maker 包含的模块: 本文分为十九个模块 ...
- JVM学习(4)——全面总结Java的GC算法和回收机制
俗话说,自己写的代码,6个月后也是别人的代码……复习!复习!复习!涉及到的知识点总结如下: 一些JVM的跟踪参数的设置 Java堆的分配参数 -Xmx 和 –Xms 应该保持一个什么关系,可以让系统的 ...
- 也学习Java/JVM/GC(四)
GC日志分析 程序代码: public class JvmTest { public static void main(String[] args) { int m = 1024 * 1024; by ...
- Understanding CMS GC Logs--转载
原文地址:https://blogs.oracle.com/poonam/entry/understanding_cms_gc_logs Understanding CMS GC Logs By Po ...
- 【转载】为什么不建议<=3G的情况下使用CMS GC
之前曾经有讲过在heap size<=3G的情况下完全不要考虑CMS GC,在heap size>3G的情况下也优先选择ParallelOldGC,而不是CMS GC,只有在暂停时间无法接 ...
- 一次CMS GC问题排查过程(理解原理+读懂GC日志)
这个是之前处理过的一个线上问题,处理过程断断续续,经历了两周多的时间,中间各种尝试,总结如下.这篇文章分三部分: 1.问题的场景和处理过程:2.GC的一些理论东西:3.看懂GC的日志 先说一下问题吧 ...
- CMS GC启动参数优化配置
简介: java启动参数共分为三类: 其一是标准参数(-),所有的JVM实现都必须实现这些参数的功能,而且向后兼容: 其二是非标准参数(-X),默认jvm实现这些参数的功能,但是并不保证所有jvm实现 ...
随机推荐
- KVC/KVO总结
KVC(键值编码) 动态设置: setValue:属性值 forKey:属性名(用于简单路径) setValue:属性值 forKeyPath:属(用于复合路径,例如Person有一个Account类 ...
- blazeds使用remote访问
欢迎交流转载,请注明出处:http://www.cnblogs.com/shizhongtao/p/3487128.html 1.配置及说明 jar包说明 从官方上下的Blazeds中,默认的配置有 ...
- 关联 Android 源代码 到 Ecplise
1. 下载android 源码存于本地硬盘; 2. 打开Eclpise, 新建Android Project; 3. 在MainActivity文件中,按住Ctrl 点击Activity类 4. 弹出 ...
- linux make clean
make clean仅仅是清除之前编译的可执行文件及配置文件. 而make distclean要清除所有生成的文件. Makefile 在符合GNU Makefiel惯例的Makefile中,包含了一 ...
- prototype原型理解
一切都是对象,对象是若干属性的集合 数组是对象.函数是对象.对象还是对象.对象里面的一切都是属性,只有属性,没有方法.方法也是属性. 一切引用类型都是属性 怎么判断一个值是否是对象? 值类型的类型 ...
- Android 使用日常
如何让Android Studio的智能感知不区分大小写? http://ask.csdn.net/questions/155844
- webpack减少打包后文件体积的几种方法
webpack 把我们所有的文件都打包成一个 JS 文件,这样即使你是小项目,打包后的文件也会非常大.下面就来讲下如何从多个方面进行优化. 去除不必要的插件 刚开始用 webpack 的时候,开发环境 ...
- 在asp.net mvc中如何使用Grid++ Report (锐浪报表)
在asp.net mvc中如何使用Grid++ Report (锐浪报表) 在cshtml,razor中的处理方法 以官方的asp.net(csharp)中的第一个示例"1a.简单表格&qu ...
- dell inspiorn 14vr 1616b ubuntu 无线网卡的问题
找到两个解决方法: 1 找 网卡驱动下载: 用命令 以下 from :http://zhidao.baidu.com/link?url=k6QNIdJlbRyZJSEW1cVUs_1p4Jv-73c8 ...
- unity3d KeyCode各键值说明
KeyCode :KeyCode是由Event.keyCode返回的.这些直接映射到键盘上的物理键. http://docs.unity3d.com/ScriptReference/KeyCode.h ...