接上一篇Linux 内核 链表 的简单模拟(1)

  第五章:Linux内核链表的遍历

/**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)

这是遍历链表的一个方法,其实就是一个for循环的宏啦!写得很清楚。但是这些操作的还是struct list_head,跟我要的结构体没有半毛钱关系,怎么办?继续看:

/**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member)

这个就是由我们自定义的结构体中包含的struct list_head获得结构体的方式,其实就是上一篇博客的container_of的第二个名字啦!container_of到了这山沟里就换了一个很土的名字啦!

好了,下面看代码就一清二楚了:

    struct list_head *p;    //pointer to each struct list_head
struct Book *pb; //pointer to struct Book list_for_each(p,&MyBkList)
{
pb = list_entry(p, struct Book,list);
cout << pb->bkId << " " << pb->bkName << endl;
}

输出:

#include <string>

using std::string;

/*ÁŽ±íœÚµã*/
struct list_head {
struct list_head *next, *prev;
}; /*±íÊŸÊéµÄœá¹¹Ìå*/
struct Book
{
int bkId;
string bkName;
struct list_head list; //ËùÓеÄBookœá¹¹ÌåÐγÉÁŽ±í
}; /*³õÊŒ»¯ÁŽ±í*/
static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
} /*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_add(struct list_head * new1,struct list_head * prev,struct list_head * next)
{
next->prev = new1;
new1->next = next;
new1->prev = prev;
prev->next = new1;
} /**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *new1, struct list_head *head)
{
__list_add(new1, head->prev, head);
} /**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *new1, struct list_head *head)
{
__list_add(new1, head, head->next);
} /**
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member) ({ \
const typeof(((type *))->member) *__mptr = (ptr); \
(type *)((char *)__mptr - offsetof(type, member)); }) /**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next) /**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member) /**
* list_first_entry - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member) /**
* list_next_entry - get the next element in list
* @pos: the type * to cursor
* @member: the name of the list_struct within the struct.
*/
#define list_next_entry(pos, member) \
list_entry((pos)->member.next, typeof(*(pos)), member) /**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_first_entry(head, typeof(*pos), member); \
&pos->member != (head); \
pos = list_next_entry(pos, member)) #undef offsetof
#ifdef __compiler_offsetof
#define offsetof(TYPE,MEMBER) __compiler_offsetof(TYPE,MEMBER)
#else
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif

至此源代码myList.h

#include <iostream>
#include "myList.h" using namespace std; int main(void)
{
struct list_head MyBkList; //ŽŽœšÎÒµÄÁŽ±íÍ·
INIT_LIST_HEAD(&MyBkList); //³õÊŒ»¯ÕâžöÁŽ±í /*ŽŽœšÐÂÊéœá¹¹Ìå*/
struct Book bk1;
bk1.bkId = ;
bk1.bkName = "book1"; list_add_tail(&bk1.list, &MyBkList); //°ÑÐÂÊé1ŒÓµœÍ·œáµãMyBkListºóÃæ struct Book bk2;
bk2.bkId = ;
bk2.bkName = "book2"; list_add_tail(&bk2.list,&MyBkList); //°ÑÊé2ŒÓµœbk1ÓëMyBkListÖ®Œä£¬°ÑMyBkList¿Ž×öÍ·£¬ÔòΪMyBkList->bk1->bk2(°ŽÕ՜ڵãnextÖžÕ룬MyBkListµÄnextÖžÕëÊÇûÓбäµÄ£¬MyBkListµÄprevÖžÕë±äÁË) struct Book bk3 = { , "book3" };
list_add(&bk3.list, &MyBkList); //°ÑÊé3ŒÓµœheadÖ®ºó£¬ŒŽheadµÄnextÖžÕë struct list_head *p; //pointer to each struct list_head
struct Book *pb; //pointer to struct Book list_for_each(p,&MyBkList)
{
pb = list_entry(p, struct Book,list);
cout << pb->bkId << " " << pb->bkName << endl;
} /*
list_for_each_entry(pb, &MyBkList, list)
{
cout << pb->bkId << " " << pb->bkName << endl;
}*/ cin.get();
}

至此源代码main.cpp

还有一个人更漂亮的遍历函数list_for_each_entry:

/**
* list_first_entry - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member) /**
* list_next_entry - get the next element in list
* @pos: the type * to cursor
* @member: the name of the list_struct within the struct.
*/
#define list_next_entry(pos, member) \
list_entry((pos)->member.next, typeof(*(pos)), member) /**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_first_entry(head, typeof(*pos), member); \
&pos->member != (head); \
pos = list_next_entry(pos, member))

使用起来更好看:

  struct Book *pb;        //pointer to struct Book
list_for_each_entry(pb, &MyBkList, list)
{
cout << pb->bkId << " " << pb->bkName << endl;
}

当然还有反向遍历等,就不多赘述了。

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

  第六章:Linux内核链表删除

  先来看看这个基本的删除节点的函数,这是其他删除函数的基础。其实这个删除函数和添加节点到链表的函数是对应的,添加的基本函数不也是以前后指针为参数并把节点添加到中间吗?Linux内核就是帅!

/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}

下面看调用上面函数的函数,其实list_del()是最常用的函数了,其他函数也只是铺垫:

/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
#ifndef CONFIG_DEBUG_LIST
static inline void __list_del_entry(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
} static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}
#else
extern void __list_del_entry(struct list_head *entry);
extern void list_del(struct list_head *entry);
#endif

其中,LIST_POISON1、LIST_POISON2 在我的M:\linux-3.14.5\include\linux下poison.h文件中:

/*
* These are non-NULL pointers that will result in page faults
* under normal circumstances, used to verify that nobody uses
* non-initialized list entries.
*/
#define LIST_POISON1 ((void *) 0x00100100 + POISON_POINTER_DELTA)
#define LIST_POISON2 ((void *) 0x00200200 + POISON_POINTER_DELTA)
/*
* Architectures might want to move the poison pointer offset
* into some well-recognized area such as 0xdead000000000000,
* that is also not mappable by user-space exploits:
*/
#ifdef CONFIG_ILLEGAL_POINTER_VALUE
# define POISON_POINTER_DELTA _AC(CONFIG_ILLEGAL_POINTER_VALUE, UL)
#else
# define POISON_POINTER_DELTA
#endif

上面的一些宏定义作用是:调用 __list_del_entry(struct list_head *entry)删除一个给定节点,这个函数会调用__list_del(struct list_head * prev, struct list_head * next),这样使得待删除的节点的前后节点因为正确连到链表里面而没有了问题了,但是待删除节点还是的结构体还是在的,其实并没有删除它,只是把它从链表里面踢出去了。为了防止意外访问到这个节点的前后节点(因为它已经不在链表中了)而出错,就给它的前后指针赋了一个非空但访问会引起页面错误的指针,表明小心中毒哦!

目前为止代码如下:

#include <iostream>
#include "myList.h" using namespace std; int main(void)
{
struct list_head MyBkList; //ŽŽœšÎÒµÄÁŽ±íÍ·
INIT_LIST_HEAD(&MyBkList); //³õÊŒ»¯ÕâžöÁŽ±í /*ŽŽœšÐÂÊéœá¹¹Ìå*/
struct Book bk1;
bk1.bkId = ;
bk1.bkName = "book1"; list_add_tail(&bk1.list, &MyBkList); //°ÑÐÂÊé1ŒÓµœÍ·œáµãMyBkListºóÃæ struct Book bk2;
bk2.bkId = ;
bk2.bkName = "book2"; list_add_tail(&bk2.list,&MyBkList); //°ÑÊé2ŒÓµœbk1ÓëMyBkListÖ®Œä£¬°ÑMyBkList¿Ž×öÍ·£¬ÔòΪMyBkList->bk1->bk2(°ŽÕ՜ڵãnextÖžÕ룬MyBkListµÄnextÖžÕëÊÇûÓбäµÄ£¬MyBkListµÄprevÖžÕë±äÁË) struct Book bk3 = { , "book3" };
list_add(&bk3.list, &MyBkList); //°ÑÊé3ŒÓµœheadÖ®ºó£¬ŒŽheadµÄnextÖžÕë struct list_head *p; //pointer to each struct list_head /*
list_for_each(p,&MyBkList)
{
pb = list_entry(p, struct Book,list);
cout << pb->bkId << " " << pb->bkName << endl;
}*/ struct Book *pb; //pointer to struct Book
list_for_each_entry(pb, &MyBkList, list)
{
cout << pb->bkId << " " << pb->bkName << endl;
} cout<<"------------------------------------"<<endl; struct Book bk4={,"book4"};
list_add_tail(&bk4.list,&MyBkList); list_del(&bk3.list); list_for_each_entry(pb, &MyBkList, list)
{
cout << pb->bkId << " " << pb->bkName << endl;
} cin.get();
}

main.cpp

#include <string>

/*
* Architectures might want to move the poison pointer offset
* into some well-recognized area such as 0xdead000000000000,
* that is also not mappable by user-space exploits:
*/
#ifdef CONFIG_ILLEGAL_POINTER_VALUE
# define POISON_POINTER_DELTA _AC(CONFIG_ILLEGAL_POINTER_VALUE, UL)
#else
# define POISON_POINTER_DELTA
#endif /*
* These are non-NULL pointers that will result in page faults
* under normal circumstances, used to verify that nobody uses
* non-initialized list entries.
*/
#define LIST_POISON1 ((void *) 0x00100100 + POISON_POINTER_DELTA)
#define LIST_POISON2 ((void *) 0x00200200 + POISON_POINTER_DELTA) using std::string; /*ÁŽ±íœÚµã*/
struct list_head {
struct list_head *next, *prev;
}; /*±íÊŸÊéµÄœá¹¹Ìå*/
struct Book
{
int bkId;
string bkName;
struct list_head list; //ËùÓеÄBookœá¹¹ÌåÐγÉÁŽ±í
}; /*³õÊŒ»¯ÁŽ±í*/
static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
} /*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_add(struct list_head * new1,struct list_head * prev,struct list_head * next)
{
next->prev = new1;
new1->next = next;
new1->prev = prev;
prev->next = new1;
} /**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *new1, struct list_head *head)
{
__list_add(new1, head->prev, head);
} /**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *new1, struct list_head *head)
{
__list_add(new1, head, head->next);
} /**
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member) ({ \
const typeof(((type *))->member) *__mptr = (ptr); \
(type *)((char *)__mptr - offsetof(type, member)); }) /**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next) /**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member) /**
* list_first_entry - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member) /**
* list_next_entry - get the next element in list
* @pos: the type * to cursor
* @member: the name of the list_struct within the struct.
*/
#define list_next_entry(pos, member) \
list_entry((pos)->member.next, typeof(*(pos)), member) /**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_first_entry(head, typeof(*pos), member); \
&pos->member != (head); \
pos = list_next_entry(pos, member)) /*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
} /**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/ static inline void __list_del_entry(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
} static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = (struct list_head *)LIST_POISON1; //Linux kernel source does not have (struct list_head *)
entry->prev = (struct list_head *)LIST_POISON2;
} #undef offsetof
#ifdef __compiler_offsetof
#define offsetof(TYPE,MEMBER) __compiler_offsetof(TYPE,MEMBER)
#else
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif

myList.h

到这里已经简单模拟实现了Linux内核链表最最基本的功能,还有其他功能,有兴趣的直接上源代码!

Linux 内核 链表 的简单模拟(2)的更多相关文章

  1. Linux 内核 链表 的简单模拟(1)

    第零章:扯扯淡 出一个有意思的题目:用一个宏定义FIND求一个结构体struct里某个变量相对struc的编移量,如 struct student { int a; //FIND(struct stu ...

  2. C语言 Linux内核链表(企业级链表)

    //Linux内核链表(企业级链表) #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> ...

  3. 深入分析 Linux 内核链表--转

    引用地址:http://www.ibm.com/developerworks/cn/linux/kernel/l-chain/index.html 一. 链表数据结构简介 链表是一种常用的组织有序数据 ...

  4. linux内核链表分析

    一.常用的链表和内核链表的区别 1.1  常规链表结构        通常链表数据结构至少应包含两个域:数据域和指针域,数据域用于存储数据,指针域用于建立与下一个节点的联系.按照指针域的组织以及各个节 ...

  5. 深入分析 Linux 内核链表

    转载:http://www.ibm.com/developerworks/cn/linux/kernel/l-chain/   一. 链表数据结构简介 链表是一种常用的组织有序数据的数据结构,它通过指 ...

  6. Linux 内核链表实现和使用(一阴一阳,太极生两仪~)

    0. 概述 学习使用一下 linux 内核链表,在实际开发中我们可以高效的使用该链表帮我们做点事, 链表是Linux 内核中常用的最普通的内建数据结构,链表是一种存放和操作可变数据元 素(常称为节点) ...

  7. Linux 内核链表的使用及深入分析【转】

    转自:http://blog.csdn.net/BoArmy/article/details/8652776 1.内核链表和普通链表的区别 内核链表是一个双向链表,但是与普通的双向链表又有所区别.内核 ...

  8. 链表的艺术——Linux内核链表分析

    引言: 链表是数据结构中的重要成员之中的一个.因为其结构简单且动态插入.删除节点用时少的长处,链表在开发中的应用场景许多.仅次于数组(越简单应用越广). 可是.正如其长处一样,链表的缺点也是显而易见的 ...

  9. Linux 内核链表 list.h 的使用

    Linux 内核链表 list.h 的使用 C 语言本身并不自带集合(Collection)工具,当我们需要把结构体(struct)实例串联起来时,就需要在结构体内声明指向下一实例的指针,构成所谓的& ...

随机推荐

  1. SON-RPC for Java

    JSON-RPC for Java https://github.com/briandilley/jsonrpc4j#json-rpc-for-java This project aims to pr ...

  2. 面试题——设计一个程序:运行报错Stack Overflow Error

    所谓Stack Overflow就是栈里面放的东西太多了,溢出了. 大家知道栈里面存放的是基本数据类型还有引用类型. 下面看这个程序 class Test { public static void m ...

  3. ERROR 1227 (42000): Access denied; you need (at least one of) the PROCESS privilege(s) for this oper

    1  用以往的mysql登陆模式登陆 [mysql@eanintmydbc002db1 mysqllog]$ mysql Enter password:  Welcome to the MySQL m ...

  4. SQL用法总结

    1.创建数据库语句 create table persons( 'id' INT NOT NULL AUTO_INCREMENT, ) NOT NULL, ) NOT NULL, PRIMARY KE ...

  5. Implementing the skip list data structure in java --reference

    reference:http://www.mathcs.emory.edu/~cheung/Courses/323/Syllabus/Map/skip-list-impl.html The link ...

  6. 嵌入式系统 Boot Loader 技术内幕

    转载:http://www.ibm.com/developerworks/cn/linux/l-btloader/index.html   1. 引言 在专用的嵌入式板子运行 GNU/Linux 系统 ...

  7. python学习笔记概述

    第一次接触python是因为一个项目需要做自动化测试,因为各种限制没有使用QTP,选择了开源的比较流行的selenium,但如果只是靠selenium进行录制脚本.修改脚本这个很多时候没办法满足需求, ...

  8. Android进阶笔记16:ListView篇之ListView刷新显示(全局 和 局部)

    一.ListView内容变化后,动态刷新的步骤(全局刷新): (1)更新适配器Adapter数据源:(不要使用匿名内部类) (2)调用适配器Adapter的刷新方法notifyDataSetChang ...

  9. linux的cron服务及应用

    Linux下的Cron用于定时执行设置的周期性指令,是Linux的内置服务,可以用以下的方法启动.关闭这个服务: /sbin/service crond start //启动服务 /sbin/serv ...

  10. HDU 4433 locker

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4433 这是一道2012年ACM天津赛区现场赛的题目,大意是给出两串数字,求用最少的转换次数将一串(A) ...