BZOJ3688: 折线统计
题解:
令f[i][j][0/1]表示前i个数有j段,最后一段是下降/上升的方案数
很容易列出状态转移方程(已按x轴排序)
f[i][j][0]=sigma(f[k][j][0]+f[k][j-1][1])(k<i&&a[k]>a[i])
f[i][j][1]=sigma(f[k][j][1]+f[k][j-1][1])(k<i&&a[k]<a[i])
很明显可以用树状数组优化。
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 100000+5
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define for4(i,x) for(int i=head[x],y;i;i=e[i].next)
#define mod 100007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m,b[maxn];
struct rec{int x,y;}a[maxn];
inline bool cmp(rec a,rec b){return a.x<b.x;}
inline bool cmp1(int i,int j){return a[i].y<a[j].y;}
struct bit
{
int s[maxn];
inline void add(int x,int y)
{
y=(y%mod+mod)%mod;
for(;x<=n;x+=x&(-x))(s[x]+=y)%=mod;
}
inline int sum(int x)
{
int t=;
for(;x;x-=x&(-x))(t+=s[x])%=mod;
return t;
}
}t[][];
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();m=read();
for1(i,n)a[i].x=read(),a[i].y=read();
sort(a+,a+n+,cmp);
for1(i,n)b[i]=i;
sort(b+,b+n+,cmp1);
for1(i,n)a[b[i]].y=i;
for1(i,n)
{
t[][].add(a[i].y,);t[][].add(a[i].y,);
for1(j,m)
{
t[j][].add(a[i].y,t[j][].sum(n)-t[j][].sum(a[i].y)+t[j-][].sum(n)-t[j-][].sum(a[i].y));
t[j][].add(a[i].y,t[j][].sum(a[i].y-)+t[j-][].sum(a[i].y-));
}
}
printf("%d\n",(t[m][].sum(n)+t[m][].sum(n))%mod);
return ;
}
3688: 折线统计
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 60 Solved: 37
[Submit][Status]
Description
二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升、下降的折线,设其数量为f(S)。如下图中,1->2,2->3,3->5,5->6(数字为下图中从左到右的点编号),将折线分为了4部分,每部分连续上升、下降。
现给定k,求满足f(S) = k的S集合个数。
Input
第一行两个整数n和k,以下n行每行两个数(xi, yi)表示第i个点的坐标。所有点的坐标值都在[1, 100000]内,且不存在两个点,x坐标值相等或y坐标值相等
Output
输出满足要求的方案总数 mod 100007的结果
Sample Input
5 5
3 2
4 4
2 3
1 1
Sample Output
HINT
对于100%的数据,n <= 50000,0 < k <= 10
BZOJ3688: 折线统计的更多相关文章
- BZOJ3688 折线统计 【dp + BIT】
题目链接 BZOJ3688 题解 将点排序 设\(f[i][j][0|1]\)表示以第\(i\)点结尾,有\(j\)段,最后一段上升或者下降的方案数 以上升为例 \[f[i][j][0] = \sum ...
- BZOJ3688 折线统计【树状数组优化DP】
Description 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1-&g ...
- 2018.09.28 bzoj3688: 折线统计(dp+树状数组)
传送门 简单树状数组优化dp. 注意到k很小提示我们搜(d)(d)(d)索(p)(p)(p). 先按第一维排序. 用f[i][j][0/1]f[i][j][0/1]f[i][j][0/1]表示第i个点 ...
- 折线统计(line)
折线统计(line) 题目描述 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中, ...
- 【ybt金牌导航1-2-3】折线统计
折线统计 题目链接:ybt金牌导航1-2-3 题目大意 在一个图上有一些点,保证任意两个点的横纵坐标都不相同. 要你选一些集合,按 x 坐标排序依次连接,会构成一些连续上升下降的折线,问你折线数量是 ...
- 题解 bzoj3688【折线统计】
考虑 \(dp\) . 首先把所有节点按 \(x\) 从小到大排序是很有必要的. 记 f[i][j][0] 表示满足以第 \(i\) 个节点做折线结尾,选取的点集 \(S\) 满足 \(f(S)=j\ ...
- [FJSC2014]折线统计
[题目描述] 二维平面上有n 个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x 坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1->2 ...
- [BZOJ2688]折线统计
Description 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1-&g ...
- echarts 折线统计笔记
效果案例图 需要引入的js文件可以直接去官网下载 下面是代码 <!--第一步: 引入 ECharts 文件 --> <script src="static/js/myjs/ ...
随机推荐
- 設定 Bootstrap/SASS/Bower/gulp (Windows平台)
請注意:在進行以下步驟前,你會需要先安裝git,可以參考這篇 git安裝教學 前言 時至今日,幾乎每個人都在討論bootstrap.less 或 sass.我們知道它們是比較新的前端技術,而且有開始愈 ...
- ComboBox Control Messages 消息
连接到MSDN,有时间完善这个.具体说明可点击进入msdn CB_ADDSTRING 添加一个字符串组合框的列表框.如果组合框没有cbs_sort风格,字符串添加到列表的结尾.否则,该字符串插入列表, ...
- Spark Streaming揭秘 Day23 启动关闭源码图解
Spark Streaming揭秘 Day23 启动关闭源码图解 今天主要分析一下SparkStreaming的启动和关闭过程. 从Demo程序出发,主要聚焦在两段代码: 启动代码: 关闭代码: 启动 ...
- Linux多进行之fork
#include <unistd.h> //定义该函数 #include <sys/types.h> //定义函数的返回类型pid_t /* 功能:复制进程 参数:无 返回值: ...
- (转载)Cocos2dx-OpenGL ES 2.0教程:你的第一个三角形(1)
前言 在本系列教程中,我会以当下最流行的2D引擎Cocos2D-X为基础,介绍OpenGL ES 2.0的一些基本用法.本系列教程的宗旨是OpenGL扫盲,让大家在使用Cocos2D-X过程中,知其然 ...
- sql shard/partition
sql http://www.infoq.com/news/2011/02/SQL-Sharding/ http://channel9.msdn.com/Shows/Data-Exposed/SqlD ...
- EF当实体模型与数据库的架构不同时要删除数据库时的报错问题
当使用的EF的时候,我们都知道EF当实体模型与数据库的架构不同时要删除数据库,这是会把错: 无法创建与 'master' 数据库之间的连接,这是因为已打开原始数据库连接,并且已从连接字符串中删除凭据. ...
- windows server 2008 r2电脑历史操作记录
1.看计算机哪天运行过. 在系统盘下的Windows\Tasks文件夹下找到文件SCHEDLGU.TXT. 2.看你最近打开过什么文件(非程序)或者文件夹 开始-->运行--> ...
- php实现调用微信上传照片然后保存至服务器与数据库
<script src="http://res.wx.qq.com/open/js/jweixin-1.0.0.js"></script> <s ...
- 1021: [SHOI2008]Debt 循环的债务 - BZOJ
Description Alice.Bob和Cynthia总是为他们之间混乱的债务而烦恼,终于有一天,他们决定坐下来一起解决这个问题.不过,鉴别钞票的真伪是一件很麻烦的事情,于是他们决定要在清还债务的 ...