[再寄小读者之数学篇](2014-05-28 Ladyzhenskaya 不等式)
$$\bex f\in C_c^\infty(\bbR^2)\ra \sen{f}_{L^4}\leq \sqrt{2} \sen{f}_{L^2}^{1/2} \sen{\p_1f}_{L^2}^{1/4} \sen{\p_2f}_{L^2}^{1/4}, \eex$$ $$\bex f\in C_c^\infty(\bbR^3)\ra \sen{f}_{L^4}\leq 2^{3/4} \sen{f}_{L^2}^{1/4} \sen{\p_1f}_{L^2}^{1/4} \sen{\p_2f}_{L^2}^{1/4} \sen{\p_3f}_{L^2}^{1/4}. \eex$$
[再寄小读者之数学篇](2014-05-28 Ladyzhenskaya 不等式)的更多相关文章
- [再寄小读者之数学篇](2014-10-08 乘积型 Sobolev 不等式)
$$\bex n\geq 2, 1\leq p<n\ra \sen{f}_{L^\frac{np}{n-p}(\bbR^n)} \leq C\prod_{k=1}^n \sen{\p_k f}_ ...
- [再寄小读者之数学篇](2014-06-20 求极限---Jordan 不等式的应用)
证明: 当 $\lm<1$ 时, $\dps{\lim_{R\to+\infty} R^\lm\int_0^{\pi/2} e^{-R\sin\tt}\rd \tt=0}$. 证明: 由 $$\ ...
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
随机推荐
- 阿里巴巴JAVA开发手册
Java编程规约 (一)命名风格 1. [强制] 代码中的命名均不能以下划线或美元符号开始,也不能以下划线或美元符号结束. 反例: _name / __name / $O ...
- 生成文件的MD5值
import hashlib #########测试################# m = hashlib.md5() m.update(b"hello") m.update( ...
- Python Revisited Day 05(模块)
目录 5.1 模块与包 5.1.1 包 5.2 Python 标准库概览 5.2.1 字符串处理 io.StringIO 类 5.2.3 命令行设计 5.2.4 数学与数字 5.2.5 时间与日期 5 ...
- openstack搭建之-keystone配置(8)
一. Base Node配置 mysql -uroot -proot CREATE DATABASE keystone GRANT ALL PRIVILEGES ON keystone.* to 'k ...
- h5-canvas 单像素操作
###1. 自定义获取指定坐标像素 var canvas = document.querySelector("#cav"); if(canvas.getContext){ var ...
- asp.net core 2.1认证
asp.net core 2.1认证 这篇文章基于asp.net core的CookieAuthenticationHandler来讲述. 认证和授权很相似,他们的英文也很相似,一个是Authenti ...
- SpringCloud学习笔记:声明式调用Feign(4)
1. Feign简介 Feign采用声明式API接口的风格,将Java HTTP客户端绑定到它的内部. Feign的首要目标是简化Java HTTP客户端调用过程. 2.Feign客户端示例 Feig ...
- fullpage.js参数参考
fullpage函数里面的参数: //Navigationmenu: false,//绑定菜单,设定的相关属性与anchors的值对应后,菜单可以控制滚动,默认为false.anchors:['fir ...
- ibufds原语
低压差分传送技术是基于低压差分信号(Low Volt-agc Differential signaling)的传送技术,从一个电路板系统内的高速信号传送到不同电路系统之间的快速数据传送都可以应用低压差 ...
- Vue组件以及组件之间的通信
一.组件的注册 1. 全局组件注册 1. 注册基本语法Vue.component Vue.component("my_header", { template: `<div&g ...