定理. $$\bex \int_0^1\frac{\ln^2x}{x^x}\rd x<2\int_0^1 \frac{\rd x}{x^x}. \eex$$

证明: 由分部积分及 Fubini 定理, $$\beex \bea \int_0^1 x^m\ln^nx\rd x&=\frac{(-1)^nn!}{(m+1)^{n+1}},\\ \int_0^1 \frac{\ln^2x}{x^x}\rd x &=\int_0^1 e^{-x\ln x} \ln^2x \rd x =\int_0^1\sum_{k=0}^\infty \frac{(-1)^k}{k!} x^k\ln^{k+2}x\rd x\\ &=\sum_{k=0}^\infty \frac{(-1)^k}{k!}\int_0^1 x^k\ln^{k+2}\rd x =\sum_{k=0}^\infty \frac{k+2}{(k+1)^{k+2}},\\ \int_0^1 \frac{\rd x}{x^x}&=\sum_{k=0}^\infty \frac{1}{(k+1)^{k+1}},\\ k+2&<2(k+1),\ (k>0). \eea \eeex$$ 而有结论成立.

2015年7月5号

张祖锦 赣南师范学院数学与计算机科学学院 邮箱: zhangzujin361@163.com

[数学笔记Mathematical Notes]2-一个带对数的积分不等式的更多相关文章

  1. [数学笔记Mathematical Notes]目录

    2.也许是一个问题,暂时没给出解答. 2015年7月5日 1. 这个一个笔记类型的数学杂志, 打算用来记录自己学数学时做的笔记,一般几页纸一期. 觉得有意思就摘抄下来,或者自己的感想. 可能有些不是原 ...

  2. [数学笔记Mathematical Notes]1-调和级数发散的一个简单证明

    定理. 调和级数 $\dps{\vsm{n}\frac{1}{n}}$ 是发散的. 证明. 设 $$\bex a_n=\sum_{k=1}^n\frac{1}{k}, \eex$$ 则 $a_n$ 递 ...

  3. Unity3D学习笔记2——绘制一个带纹理的面

    目录 1. 概述 2. 详论 2.1. 网格(Mesh) 2.1.1. 顶点 2.1.2. 顶点索引 2.2. 材质(Material) 2.2.1. 创建材质 2.2.2. 使用材质 2.3. 光照 ...

  4. NVIDIA CG语言 函数之所有数学类函数(Mathematical Functions)

    数学类函数(Mathematical Functions) abs(x) 返回标量和向量x的绝对值 如果x是向量,则返回每一个成员的绝对值 acos(x) 返回标量和向量x的反余弦 x的范围是[-1, ...

  5. 思考的乐趣----matrix67数学笔记:最精妙的无字证明

    从<思考的乐趣----matrix67数学笔记>一书中看到这个证明,据说在mathoverflow网站上这个无字证明获得了最多的投票! http://mathoverflow.net/qu ...

  6. AI与数学笔记之深入浅出的讲解傅里叶变换(真正的通俗易懂)

    原文出处: 韩昊    # 作 者:韩 昊 # 知 乎:Heinrich # 微 博:@花生油工人 # 知乎专栏:与时间无关的故事 # 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张 ...

  7. 创建一个带模版的用户控件 V.3

    再重构此篇<创建一个带模版的用户控件  V.2>http://www.cnblogs.com/insus/p/4164149.html 让其它动态实现header,Item和Footer. ...

  8. 创建一个带模版的用户控件 V.2

    前面有做练习<创建一个带模版的用户控件>http://www.cnblogs.com/insus/p/4161544.html .过于简化.通常使用数据控件Repeater会有网页写好He ...

  9. Android(java)学习笔记219:开发一个多界面的应用程序之两种意图

    1.两种意图: (1)显式意图: 在代码里面用intent设置要开启Activity的字节码.class文件: (2)隐式意图: Android(java)学习笔记218:开发一个多界面的应用程序之人 ...

随机推荐

  1. js 设备判断(移动端pc端 安卓ios 微信)

    苹果安卓判断 $(function () { var u = navigator.userAgent, app = navigator.appVersion; var isAndroid = u.in ...

  2. K8S集群技术

    1.快速部署K8S环境 k8s-m :10.0.0.11   k8s-n1 :10.0.0.12   k8s-n2 :10.0.0.13 2.所有节点安装docker环境及依赖 2.1 上传docke ...

  3. C# — 调用dll出现试图加载不正确格式的程序问题

    今天在调用百度dll包时,运行项目出现了如下警告: 修改:鼠标右击项目名称----选择属性----生成-----平台目标-----X64(由于我调用的是X64的dll包,所以这里选择X64,网上许多说 ...

  4. Error:Execution failed for task ':app:processDebugManifest'. Manifest merger failed with multiple errors, see logs

    这个异常在网上一搜会出现很多答案,也可能都对. 我都尝试过但是不符合我这边的要求,问题得不到解决.网上的说法是对的,jar包冲突.不过究竟是哪里冲突没办法判断. 最后尝试了一下在module的中没用的 ...

  5. 使用jprofiler分析dump文件一个实例

    3 .dump 线上文件栈 [root@yszyz10a153 ~]# jmap -dump:live,format=b,file=heap201712.hropf  72947 参考:https:/ ...

  6. Pandas基本操作

    pandas:数据分析 pandas是一个强大的Python数据分析的工具包. pandas是基于NumPy构建的. pandas的主要功能 具备对其功能的数据结构DataFrame.Series 集 ...

  7. Git—推送代码至Github

    Git—上传代码至Github 首先得有个Github的账户,然后创建一个库. 然后找到指向改库的URL 第一次上传需要设置用户邮箱,打开git安装文件/bin下面找到git.bash并打开,设置全局 ...

  8. JS 面向对象 ~ 继承的7种方式

    前言: 继承 是 OO 语言中的一个最为人津津乐道的概念.许多 OO 语言都支持两种继承方式:接口继承 和 实现继承.接口继承只继承方法签名,而实现继承则继承实际的方法.如前所述,由于函数没有签名,在 ...

  9. mysql int(19) float(7,2) decimal(7,2)对比

    nt(19):指定数字的显示宽度为19,与实际存储数值的范围无关 float(7,2):  7是显示宽度指示器,指定显示的浮点数为7位数字(与float实际存储值的范围无关),2代表小数点后只有两位小 ...

  10. coding规约的网站, 从sonar中链接过去

    一个coding规约的网站, 从sonar中链接过去的. 挺好. https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding ...