定理. $$\bex \int_0^1\frac{\ln^2x}{x^x}\rd x<2\int_0^1 \frac{\rd x}{x^x}. \eex$$

证明: 由分部积分及 Fubini 定理, $$\beex \bea \int_0^1 x^m\ln^nx\rd x&=\frac{(-1)^nn!}{(m+1)^{n+1}},\\ \int_0^1 \frac{\ln^2x}{x^x}\rd x &=\int_0^1 e^{-x\ln x} \ln^2x \rd x =\int_0^1\sum_{k=0}^\infty \frac{(-1)^k}{k!} x^k\ln^{k+2}x\rd x\\ &=\sum_{k=0}^\infty \frac{(-1)^k}{k!}\int_0^1 x^k\ln^{k+2}\rd x =\sum_{k=0}^\infty \frac{k+2}{(k+1)^{k+2}},\\ \int_0^1 \frac{\rd x}{x^x}&=\sum_{k=0}^\infty \frac{1}{(k+1)^{k+1}},\\ k+2&<2(k+1),\ (k>0). \eea \eeex$$ 而有结论成立.

2015年7月5号

张祖锦 赣南师范学院数学与计算机科学学院 邮箱: zhangzujin361@163.com

[数学笔记Mathematical Notes]2-一个带对数的积分不等式的更多相关文章

  1. [数学笔记Mathematical Notes]目录

    2.也许是一个问题,暂时没给出解答. 2015年7月5日 1. 这个一个笔记类型的数学杂志, 打算用来记录自己学数学时做的笔记,一般几页纸一期. 觉得有意思就摘抄下来,或者自己的感想. 可能有些不是原 ...

  2. [数学笔记Mathematical Notes]1-调和级数发散的一个简单证明

    定理. 调和级数 $\dps{\vsm{n}\frac{1}{n}}$ 是发散的. 证明. 设 $$\bex a_n=\sum_{k=1}^n\frac{1}{k}, \eex$$ 则 $a_n$ 递 ...

  3. Unity3D学习笔记2——绘制一个带纹理的面

    目录 1. 概述 2. 详论 2.1. 网格(Mesh) 2.1.1. 顶点 2.1.2. 顶点索引 2.2. 材质(Material) 2.2.1. 创建材质 2.2.2. 使用材质 2.3. 光照 ...

  4. NVIDIA CG语言 函数之所有数学类函数(Mathematical Functions)

    数学类函数(Mathematical Functions) abs(x) 返回标量和向量x的绝对值 如果x是向量,则返回每一个成员的绝对值 acos(x) 返回标量和向量x的反余弦 x的范围是[-1, ...

  5. 思考的乐趣----matrix67数学笔记:最精妙的无字证明

    从<思考的乐趣----matrix67数学笔记>一书中看到这个证明,据说在mathoverflow网站上这个无字证明获得了最多的投票! http://mathoverflow.net/qu ...

  6. AI与数学笔记之深入浅出的讲解傅里叶变换(真正的通俗易懂)

    原文出处: 韩昊    # 作 者:韩 昊 # 知 乎:Heinrich # 微 博:@花生油工人 # 知乎专栏:与时间无关的故事 # 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张 ...

  7. 创建一个带模版的用户控件 V.3

    再重构此篇<创建一个带模版的用户控件  V.2>http://www.cnblogs.com/insus/p/4164149.html 让其它动态实现header,Item和Footer. ...

  8. 创建一个带模版的用户控件 V.2

    前面有做练习<创建一个带模版的用户控件>http://www.cnblogs.com/insus/p/4161544.html .过于简化.通常使用数据控件Repeater会有网页写好He ...

  9. Android(java)学习笔记219:开发一个多界面的应用程序之两种意图

    1.两种意图: (1)显式意图: 在代码里面用intent设置要开启Activity的字节码.class文件: (2)隐式意图: Android(java)学习笔记218:开发一个多界面的应用程序之人 ...

随机推荐

  1. 阿里云上的Centos 7.6的一次Nginx+Mysql+PHP7.3 部署

    阿里云申请了一台服务器 Centos 7.6,每次安装都要上网找一大堆教程,因为不熟悉,因为总是忘记. 所以,有时间的时候,还是记录下自己的学习过程,有助于下次的问题解决. 我先总结下: 1)安装VS ...

  2. requests的基本用法

    r = requests.get('https://api.github.com/events', params = {'key1': 'value1', 'key2': 'value2'}) r = ...

  3. 【Linux基础】查看硬件信息-系统

    1.查看计算机名 hostname 2.查看内核/操作系统/CPU信息 uname -a   4.查看操作系统版本(Linux) head -n 2 /etc/issue Red Hat Enterp ...

  4. centos7源码包安装Mongodb,并设置开机自启动

    1.下载源码包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.2.12.tgz 2.解压 放到 /usr/local/ ...

  5. CodeChef Dynamic GCD

    嘟嘟嘟vjudge 我今天解决了一个历史遗留问题! 题意:给一棵树,写一个东西,支持一下两种操作: 1.\(x\)到\(y\)的路径上的每一个点的权值加\(d\). 2.求\(x\)到\(y\)路径上 ...

  6. odoo中各视图写法

    透视图: 还需要将一个pivot表添加到要待办任务(To-Do Tasks)中,请使用以下代码: <record id="view_pivot_todo_task" mode ...

  7. UOJ188 Sanrd Min_25筛

    传送门 省选之前做数论题会不会有Debuff啊 这道题显然是要求\(1\)到\(x\)中所有数第二大质因子的大小之和,如果不存在第二大质因子就是\(0\) 线性筛似乎可以做,但是\(10^{11}\) ...

  8. maven 发布快照版本后的引用

    使用nexus发布快照版本后, 引用项目问题 必须 <scope>test</scope> 才能引用快照.releases 不受此限制

  9. 【Swift 2.2】iOS开发笔记(三)

    1.UITableView 中调用 UIButton 的 setTitle 会闪 滚动列表时比较明显,解决办法: buttonType 改成 custom 即可,但是这样一来 UIButton 的高亮 ...

  10. css3 animation(左右摆动) (放大缩小)

    左右摆动: @-webkit-keyframes roundRule{ 0%, 100%{ -webkit-transform: rotate(-15deg); } 50%{ -webkit-tran ...