【AGC 005F】Many Easy Problems
Description
One day, Takahashi was given the following problem from Aoki:
You are given a tree with N vertices and an integer K. The vertices are numbered 1 through N. The edges are represented by pairs of integers (ai,bi).
For a set S of vertices in the tree, let f(S) be the minimum number of the vertices in a subtree of the given tree that contains all vertices in S.
There are C(n,k) ways to choose K vertices from the trees. For each of them, let S be the set of the chosen vertices, and find the sum of f(S) over all C(n,k) ways.
Since the answer may be extremely large, print it modulo 924844033(prime).
Since it was too easy for him, he decided to solve this problem for all K=1,2...N.
2≤N≤200000,1≤ai,bi≤N.The given graph is a tree.
Input
Output
Print N lines. The i-th line should contain the answer to the problem where K=i, modulo 924844033.
题意:给定一棵 $n$ 个节点的树,选出 $k$ 个特殊点,假设点集为 $S$,令 $f(S)$ 为最小的包含这 $k$ 个节点的连通块,分别求出 $k=1...n$ 在所有情况下的 $f(S)$ 的和。
分析:
考虑暴力,一个点被统计在连通块内,即在以它为根时,选出来的 $k$ 个点都在它的同一个儿子的子树内。即节点 $x$ 被统计进答案的次数 $g(x)$ 为:
$$g(x)=\binom{n}{k}-\sum _{(x,i)\subseteq E}\binom{sz_{i}}{k}$$
令 $cnt_{x}$ 表示上述公式里有多少个 $sz_{i}=x$,那么可以得到:
$$ans_{k}=\sum _{i=1}^{n}cnt_{i}\cdot\binom{i}{k}$$
整理可得:
$$k!\cdot ans_{k}=\sum _{i=1}^{n}\frac{cnt_{i}\cdot i!}{(i-k)!}$$
令 $a_{i}=cnt_{i}\cdot i!$,$b_{i}=(n-i)!$,则可得:
$$k!\cdot ans_{k}=\sum _{i=1}^{n}a_{i}\cdot b_{n-i+k}$$
最终答案为 $n\cdot \binom{n}{k}-ans_{k}$ 。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int N=2e5+;
const int M=+;
const int mod=;
int n,nn,cnt,u,v,ans,first[N],fac[N],inv[N];
int num[N],sz[N],a[M],b[M];
struct edge{int to,next;}e[N*];
int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
void ins(int u,int v){e[++cnt]=(edge){v,first[u]};first[u]=cnt;}
void dfs(int x,int fa)
{
sz[x]=;
for(int i=first[x];i;i=e[i].next)
{
int to=e[i].to;
if(to==fa)continue;
dfs(to,x);
sz[x]+=sz[to];
}
if(fa!=-)a[sz[x]]++,a[n-sz[x]]++;
}
int power(int a,int b)
{
int ans=;
while(b)
{
if(b&)ans=1ll*ans*a%mod;
a=1ll*a*a%mod;b>>=;
}
return ans;
}
void ntt(int *a,int n,int f)
{
int k=;while((<<k)<n)k++;
for(int i=;i<n;i++)
{
int t=;
for(int j=;j<k;j++)
if(i&(<<j))t|=(<<(k-j-));
if(i<t)swap(a[i],a[t]);
}
for(int l=;l<=n;l<<=)
{
int m=l>>,nw=power(,(mod-)/l);
if(f==-)nw=power(nw,mod-);
for(int *p=a;p!=a+n;p+=l)
{
int w=;
for(int i=;i<m;i++)
{
int t=1ll*p[m+i]*w%mod;
p[m+i]=(p[i]-t+mod)%mod;
p[i]=(p[i]+t)%mod;
w=1ll*w*nw%mod;
}
}
}
if(f==-)
{
int inv=power(n,mod-);
for(int i=;i<n;i++)a[i]=1ll*a[i]*inv%mod;
}
}
int main()
{
n=read();
for(int i=;i<n;i++)
{
u=read();v=read();
ins(u,v);ins(v,u);
}
dfs(,-);
fac[]=;
for(int i=;i<=n;i++)fac[i]=1ll*fac[i-]*i%mod;
inv[n]=power(fac[n],mod-);
for(int i=n;i>=;i--)inv[i-]=1ll*inv[i]*i%mod;
for(int i=;i<=n;i++)a[i]=1ll*a[i]*fac[i]%mod;
for(int i=;i<=n;i++)b[n-i]=inv[i];
nn=;while(nn<n+n+)nn<<=;
ntt(a,nn,);ntt(b,nn,);
for(int i=;i<nn;i++)a[i]=1ll*a[i]*b[i]%mod;
ntt(a,nn,-);
for(int i=;i<=n;i++)
{
ans=1ll*fac[n]*inv[i]%mod*inv[n-i]%mod*n%mod;
printf("%lld\n",(ans-1ll*a[n+i]*inv[i]%mod+mod)%mod);
}
return ;
}
【AGC 005F】Many Easy Problems的更多相关文章
- 【AGC005 F】Many Easy Problems
神他吗一天考一道码农题两道 FFT(其实还是我推式子一窍不通) 题意 给你一棵 \(n\) 个点的树,再给你一个常数 \(k\). 设 \(S\) 为树上某些点的集合,定义 \(f(S)\) 为最小的 ...
- 【期望DP】BZOJ3450- Tyvj1952 Easy
---恢复内容开始--- [题目大意] 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有a*a分,comb就是极大的连续o.求期望分数. [思路] 比之前的OS ...
- 【Hello 2018 D】Too Easy Problems
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 可以考虑把所有的题目按照ai排序. 然后顺序考虑最后做出来的题目个数和第i道题目的ai一样. 则1..i-1这些题目就没有用了. 值 ...
- 【AGC005F】Many Easy Problems FFT 容斥原理
题目大意 给你一棵树,有\(n\)个点.还给你了一个整数\(k\). 设\(S\)为树上某些点的集合,定义\(f(S)\)为最小的包含\(S\)的联通子图的大小. \(n\)个点选\(k\)个点一共有 ...
- 【AGC005F】Many Easy Problems (NTT)
Description 给你一棵\(~n~\)个点的树和一个整数\(~k~\).设为\(~S~\)为树上某些点的集合,定义\(~f(S)~\)为最小的包含\(~S~\)的联通子图的大小.\(~n~ ...
- 【AGC005F】Many Easy Problems
Description 题目链接 对于每个\(k\),统计任选\(k\)个点作为关键点的"最小生成树"的大小之和 Solution 正向想法是枚举或者计算大小为\(x\).叶子数目 ...
- 【POJ 2826】An Easy Problem?!(几何、线段)
两个木条装雨水能装多少. 两线段相交,且不遮盖的情况下才可能装到水. 求出交点,再取两线段的较高端点的较小值h,(h-交点的y)为三角形的高. 三角形的宽即为(h带入两条线段所在直线得到的横坐标的差值 ...
- 【AGC 002F】Leftmost Ball
Description Snuke loves colorful balls. He has a total of N*K balls, K in each of his favorite N col ...
- 【hdu6334】【2018Multi-University-Training Contest04】Problem C. Problems on a Tree
维护1边的联通块和2边的联通块,合并的时候直接启发式合并. cdqz的大爷好强啊. #include<bits/stdc++.h> #define lson (o<<1) #d ...
随机推荐
- Linux学习历程——Centos 7 chown命令
一.命令介绍 Linux是多人多工操作系统,所有的文件皆有拥有者.利用 chown 将指定文件的拥有者改为指定的用户或组, 用户可以是用户名或者用户ID:组可以是组名或者组ID:文件是以空格分开的要改 ...
- zabbix调用api检索方法
环境 zabbix:172.16.128.16:zabbix_web:172.16.16.16/zabbix 用户名:Admin 密码:zabbix 获取的数据仅做参考,以Linux发送HTTP的PO ...
- 免费了 -- EXCEL插件 智表ZCELL 普及版V1.0 发布了!!!
智表(zcell)是一款浏览器仿excel表格jquery插件.智表可以为你提供excel般的智能体验,支持双击编辑.设置公式.设置显示小数精度.下拉框.自定义单元格.复制粘贴.不连续选定.合并单元格 ...
- python学习——读取染色体长度(五:从命令行输入染色体长度)
# 传递命令行参数 # 导入sys模块 import sys print(sys.argv) 命令行操作 python argv.py 10 20 30 40 50 回车输出 ['argv.py' ...
- 在Linux系统安装Nodejs 最简单步骤
1.去官网下载和自己系统匹配的文件: 英文网址:https://nodejs.org/en/download/ 中文网址:http://nodejs.cn/download/ 通过 uname -a ...
- Bool的转录功能
Bool的转录功能 and 当and前边的条件成立时,才执行后边的条件.当前边的条件不成立时,后边的条件一定执行. 特性实用: 不使用if.while写一个具有判断功能的代码. def fun(): ...
- Python_if
if if c语言中的if语句格式如下: if (条件) { 结果} python的格式与其不同,定义了自己的格式,更加的简明: if 条件 : 结果 print(111) if 3 > 2: ...
- 【MySQL 读书笔记】当我们在使用索引的时候我们在做什么
我记得之前博客我也写过关于索引使用的文章,但是并不全面,这次尽量针对重点铺全面一点. 因为索引是数据引擎层的结构我们只针对最常见使用的 Innodb 使用的 B+Tree 搜索树结构进行介绍. 每一个 ...
- bugku web 变量1
flag In the variable ! <?php error_reporting(0);include "flag1.php";highlight_file(__fi ...
- 【12】Django 中间件
前戏 我们在前面的课程中已经学会了给视图函数加装饰器来判断是用户是否登录,把没有登录的用户请求跳转到登录页面.我们通过给几个特定视图函数加装饰器实现了这个需求.但是以后添加的视图函数可能也需要加上装 ...