Description

  给定一个长度为n的正整数数列a[i]。

  定义2个位置的f值为两者位置差与数值差的和,即f(x,y)=|x-y|+|a[x]-a[y]|。

  你需要写一个程序支持2种操作(k都是正整数):

  Modify x k:将第x个数的值修改为k。

  Query x k:询问有几个i满足f(x,i)<=k。询问不仅要考虑当前数列,还要考虑任意历史版本,即统计任意位置上出现过的任意数值与当前的a[x]的f值<=k的对数。(某位置多次修改为同样的数值,按多次统计)

Main

  令F(x,y)=|x-y|+|a[x]-a[y]|,每次可以将a[x]修改为k,或者查询满足f(x,i)≤k的个数。

Analysis

【二维线段树/树状数组】  

  看到题目这样的粗俗,笼统,简洁明了,便知道一定要用一个数据结构维护

  我们可以将x抽象为x坐标,a[x]抽象为y坐标,那么f(x,y)的意思就显然了:表示x点(x,a[x])和y点(y,a[y])的曼哈顿距离。

  但是这个曼哈顿距离比较蛋疼,不着急,画(截)个图看看。

  

  我们发现图片大概是这样的,发现这个可以取的范围是个菱形,旋转90°就变成了正方形。旋转就是使坐标(x,y)变成(x+y,x-y)

  

  那么,问题就转化为每次可以加入一些点,求某个正方形内包含点的个数。

【K-Dtree】

  。。。

【cbq分治+主席树】

  ...

Solution

  我们考虑用一个数据结构来维护,如二维线段树/树状数组。

  每次相当于插入点(x+a[x],x-a[x])到图中,线段树/树状数组维护左下角为(x1,y1),右上角为(x2,y2)的矩阵信息,查询即可。

  对于二维线段树,有两种实现方法。一种是划分为4个区域,第二种是划分为2个,根据长宽的大小来切。

  

  要动态开点。直接做会超时,要加优化:当前子树没有贡献,直接退出。

【K-Dtree】

  。。。

【cbq分治+主席树】

  ...

Code

{$inline on}
var
ch,lala:char;
n,m,i,x,y,tot,ans:longint;
a:array[..] of longint;
tree:array[..] of longint;
son:array[..,..] of longint;
procedure dispose; inline;
begin
read(ch); lala:='';
while lala<>' ' do read(lala); readln(x,y);
end; procedure fyj(x:longint); inline;
begin
if son[x,]= then
begin
inc(tot); son[x,]:=tot;
inc(tot); son[x,]:=tot;
end;
end; procedure change(root,x1,y1,x2,y2,fx,fy:longint); inline;
var
mid:longint;
begin
if (x1=x2) and (y1=y2) and (x1=fx) and (y1=fy) then
begin
inc(tree[root]); exit;
end; fyj(root); if x2-x1>=y2-y1 then
begin
mid:=(x1+x2) shr ; if fx<=mid then
change(son[root,],x1,y1,mid,y2,fx,fy)
else
change(son[root,],mid+,y1,x2,y2,fx,fy);
end
else
begin
mid:=(y1+y2) shr ; if fy<=mid then
change(son[root,],x1,y1,x2,mid,fx,fy)
else
change(son[root,],x1,mid+,x2,y2,fx,fy);
end; tree[root]:=tree[son[root,]]+tree[son[root,]];
end; procedure find(root,x1,y1,x2,y2,fx1,fy1,fx2,fy2:longint); inline;
var
mid:longint;
begin
if (x1=fx1) and (x2=fx2) and (y1=fy1) and (y2=fy2) then
begin
ans:=ans+tree[root]; exit;
end; if son[root,]= then
exit; if x2-x1>=y2-y1 then
begin
mid:=(x1+x2) shr ; if fx2<=mid then
find(son[root,],x1,y1,mid,y2,fx1,fy1,fx2,fy2)
else
if fx1>mid then
find(son[root,],mid+,y1,x2,y2,fx1,fy1,fx2,fy2)
else
begin
find(son[root,],x1,y1,mid,y2,fx1,fy1,mid,fy2);
find(son[root,],mid+,y1,x2,y2,mid+,fy1,fx2,fy2);
end;
end
else
begin
mid:=(y1+y2) shr ; if fy2<=mid then
find(son[root,],x1,y1,x2,mid,fx1,fy1,fx2,fy2)
else
if fy1>mid then
find(son[root,],x1,mid+,x2,y2,fx1,fy1,fx2,fy2)
else
begin
find(son[root,],x1,y1,x2,mid,fx1,fy1,fx2,mid);
find(son[root,],x1,mid+,x2,y2,fx1,mid+,fx2,fy2);
end;
end;
end;
begin
readln(n,m); tot:=; for i:= to n do
begin
read(a[i]); change(,,,,,i+a[i]+,i-a[i]+);
end; readln; for i:= to m do
begin
dispose; if ch='M' then
begin
change(,,,,,x+y+,x-y+); a[x]:=y;
end
else
begin
ans:=;
find(,,,,,x+a[x]-y+,x-a[x]-y+,x+a[x]+y+,x-a[x]+y+); writeln(ans);
end;
end;
end.

[JZOJ3615]【NOI2014模拟】数列(平面几何+二维线段树)的更多相关文章

  1. [CSP-S模拟测试]:表格(动态开点二维线段树+离散化)

    题目传送门(内部题112) 输入格式 一个数$N$,表示矩形的个数. 接下来$N$行,每行四个整数$X_a,Y_a,X_b,Y_b$.分别表示每个矩形左下角和右上角的坐标. 保证$(X_a<X_ ...

  2. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  3. bzoj4785:[ZJOI2017]树状数组:二维线段树

    分析: "如果你对树状数组比较熟悉,不难发现可怜求的是后缀和" 设数列为\(A\),那么可怜求的就是\(A_{l-1}\)到\(A_{r-1}\)的和(即\(l-1\)的后缀减\( ...

  4. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  5. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  6. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  7. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  8. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  9. HDU 4819 Mosaic (二维线段树)

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

随机推荐

  1. react 中使用阿里彩色图标

    1. 不光要引入css ,还要引入js 2. 在需要引入icon的地方添加 <svg className={styles.menuIcon} aria-hidden="true&quo ...

  2. vue-router组件重用 路由切换时的问题

    当一个组件被重用时,切换路由,该组件不会被销毁.该组件的created也不会被调用,如果在created中有获取数据的操作,切换路由后,就不会再获取新的数据了,界面上就没有刷新. 其实官方文档就有解决 ...

  3. 第十五节、OpenCV学习(四)图像平滑与滤波

    图像的平滑与滤波 平滑滤波是低频增强的空间域滤波技术,是图像模糊.消除噪声. 一.2D滤波器cv2.filter2D() 对于2D图像可以进行低通或者高通滤波操作,低通滤波(LPF)有利于去噪声,模糊 ...

  4. 2018-2019-2 网络对抗技术 20165325 Exp3 免杀原理与实践

    2018-2019-2 网络对抗技术 20165325 Exp3 免杀原理与实践 实验内容(概要) 一.正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,自己 ...

  5. SkyReach 团队团队展示

    班级:软件工程1916|W 作业:团队作业第一次-团队展示 团队名称:SkyReach 目标:展示团队风采,磨合团队 队员姓名与学号 队员学号 队员姓名 个人博客地址 备注 221600107 陈某某 ...

  6. 感受野RF的计算

    参考博客:https://blog.csdn.net/wgx571859177/article/details/80983043 设第N层的感受野为N_RF,卷积核尺寸为kernel_size,步长为 ...

  7. Union 与 Union all 的区别【坑】

    UNION操作符用于合并两个或多个SELECT语句的结果集 请注意,UNION 内部的 SELECT 语句必须拥有相同数量的列.列也必须拥有相似的数据类型.同时,每条 SELECT 语句中的列的顺序必 ...

  8. 迭代和JDB(课下作业,选做)

    迭代和JDB(课下作业,选做) 题目要求 1 使用C(n,m)=C(n-1,m-1)+C(n-1,m)公式进行递归编程实现求组合数C(m,n)的功能 2 m,n 要通过命令行传入 3 提交测试运行截图 ...

  9. MUI底部导航切换子页面

    1.登陆页面进入之后,进入到main页面,main页面只有一个底部导航,然后引入子页面进行渲染. <nav class="mui-bar mui-bar-tab" id=&q ...

  10. requests基本应用

    requests基本功能详解 import requests response = requests.get('https://www.baidu.com') print('type属性:',type ...