[JZOJ3615]【NOI2014模拟】数列(平面几何+二维线段树)
Description
给定一个长度为n的正整数数列a[i]。
定义2个位置的f值为两者位置差与数值差的和,即f(x,y)=|x-y|+|a[x]-a[y]|。
你需要写一个程序支持2种操作(k都是正整数):
Modify x k:将第x个数的值修改为k。
Query x k:询问有几个i满足f(x,i)<=k。询问不仅要考虑当前数列,还要考虑任意历史版本,即统计任意位置上出现过的任意数值与当前的a[x]的f值<=k的对数。(某位置多次修改为同样的数值,按多次统计)
Main
令F(x,y)=|x-y|+|a[x]-a[y]|,每次可以将a[x]修改为k,或者查询满足f(x,i)≤k的个数。
Analysis
【二维线段树/树状数组】
看到题目这样的粗俗,笼统,简洁明了,便知道一定要用一个数据结构维护
我们可以将x抽象为x坐标,a[x]抽象为y坐标,那么f(x,y)的意思就显然了:表示x点(x,a[x])和y点(y,a[y])的曼哈顿距离。
但是这个曼哈顿距离比较蛋疼,不着急,画(截)个图看看。
我们发现图片大概是这样的,发现这个可以取的范围是个菱形,旋转90°就变成了正方形。旋转就是使坐标(x,y)变成(x+y,x-y)
那么,问题就转化为每次可以加入一些点,求某个正方形内包含点的个数。
【K-Dtree】
。。。
【cbq分治+主席树】
...
Solution
我们考虑用一个数据结构来维护,如二维线段树/树状数组。
每次相当于插入点(x+a[x],x-a[x])到图中,线段树/树状数组维护左下角为(x1,y1),右上角为(x2,y2)的矩阵信息,查询即可。
对于二维线段树,有两种实现方法。一种是划分为4个区域,第二种是划分为2个,根据长宽的大小来切。
要动态开点。直接做会超时,要加优化:当前子树没有贡献,直接退出。
【K-Dtree】
。。。
【cbq分治+主席树】
...
Code
{$inline on}
var
ch,lala:char;
n,m,i,x,y,tot,ans:longint;
a:array[..] of longint;
tree:array[..] of longint;
son:array[..,..] of longint;
procedure dispose; inline;
begin
read(ch); lala:='';
while lala<>' ' do read(lala); readln(x,y);
end; procedure fyj(x:longint); inline;
begin
if son[x,]= then
begin
inc(tot); son[x,]:=tot;
inc(tot); son[x,]:=tot;
end;
end; procedure change(root,x1,y1,x2,y2,fx,fy:longint); inline;
var
mid:longint;
begin
if (x1=x2) and (y1=y2) and (x1=fx) and (y1=fy) then
begin
inc(tree[root]); exit;
end; fyj(root); if x2-x1>=y2-y1 then
begin
mid:=(x1+x2) shr ; if fx<=mid then
change(son[root,],x1,y1,mid,y2,fx,fy)
else
change(son[root,],mid+,y1,x2,y2,fx,fy);
end
else
begin
mid:=(y1+y2) shr ; if fy<=mid then
change(son[root,],x1,y1,x2,mid,fx,fy)
else
change(son[root,],x1,mid+,x2,y2,fx,fy);
end; tree[root]:=tree[son[root,]]+tree[son[root,]];
end; procedure find(root,x1,y1,x2,y2,fx1,fy1,fx2,fy2:longint); inline;
var
mid:longint;
begin
if (x1=fx1) and (x2=fx2) and (y1=fy1) and (y2=fy2) then
begin
ans:=ans+tree[root]; exit;
end; if son[root,]= then
exit; if x2-x1>=y2-y1 then
begin
mid:=(x1+x2) shr ; if fx2<=mid then
find(son[root,],x1,y1,mid,y2,fx1,fy1,fx2,fy2)
else
if fx1>mid then
find(son[root,],mid+,y1,x2,y2,fx1,fy1,fx2,fy2)
else
begin
find(son[root,],x1,y1,mid,y2,fx1,fy1,mid,fy2);
find(son[root,],mid+,y1,x2,y2,mid+,fy1,fx2,fy2);
end;
end
else
begin
mid:=(y1+y2) shr ; if fy2<=mid then
find(son[root,],x1,y1,x2,mid,fx1,fy1,fx2,fy2)
else
if fy1>mid then
find(son[root,],x1,mid+,x2,y2,fx1,fy1,fx2,fy2)
else
begin
find(son[root,],x1,y1,x2,mid,fx1,fy1,fx2,mid);
find(son[root,],x1,mid+,x2,y2,fx1,mid+,fx2,fy2);
end;
end;
end;
begin
readln(n,m); tot:=; for i:= to n do
begin
read(a[i]); change(,,,,,i+a[i]+,i-a[i]+);
end; readln; for i:= to m do
begin
dispose; if ch='M' then
begin
change(,,,,,x+y+,x-y+); a[x]:=y;
end
else
begin
ans:=;
find(,,,,,x+a[x]-y+,x-a[x]-y+,x+a[x]+y+,x-a[x]+y+); writeln(ans);
end;
end;
end.
[JZOJ3615]【NOI2014模拟】数列(平面几何+二维线段树)的更多相关文章
- [CSP-S模拟测试]:表格(动态开点二维线段树+离散化)
题目传送门(内部题112) 输入格式 一个数$N$,表示矩形的个数. 接下来$N$行,每行四个整数$X_a,Y_a,X_b,Y_b$.分别表示每个矩形左下角和右上角的坐标. 保证$(X_a<X_ ...
- poj 1195:Mobile phones(二维线段树,矩阵求和)
Mobile phones Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 14391 Accepted: 6685 De ...
- bzoj4785:[ZJOI2017]树状数组:二维线段树
分析: "如果你对树状数组比较熟悉,不难发现可怜求的是后缀和" 设数列为\(A\),那么可怜求的就是\(A_{l-1}\)到\(A_{r-1}\)的和(即\(l-1\)的后缀减\( ...
- UVA 11297 线段树套线段树(二维线段树)
题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要 不同的处理方式,非叶子形成的 ...
- POJ2155 Matrix二维线段树经典题
题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...
- HDU 1823 Luck and Love(二维线段树)
之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...
- poj 2155:Matrix(二维线段树,矩阵取反,好题)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17880 Accepted: 6709 Descripti ...
- POJ 2155 Matrix (二维线段树)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17226 Accepted: 6461 Descripti ...
- HDU 4819 Mosaic (二维线段树)
Mosaic Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)Total S ...
随机推荐
- MySQL学习11 - MySQL创建用户和授权
权限管理 权限管理 我们知道我们的最高权限管理者是root用户,它拥有着最高的权限操作.包括select.update.delete.update.grant等操作.那么一般情况在公司之后DBA工程师 ...
- go 【第二篇】包、变量、函数
包 初试 每个 Go 程序都是由包组成的. 程序运行的入口是包 `main`. 这个程序使用并导入了包 "fmt" 和 `"math/rand"`. 按照惯例, ...
- my.ini的路径分隔符
又踩了个坑,今天安装mysql,路径为F:\test\mysql于是我配置my.ini如下 [mysqld] basedir=F:\test\mysql datadir=F:\test\mysql\d ...
- 机器学习用Pandas实现数据库的读取
#读取数据库数据#import pandas as pd 导入模块#import pymysql 导入数据库模块#con = pymysql.connect(host='localhost',po ...
- kali下的webshell工具-Weevely
Weevely ------------------------------------------------ 主要特点: · 隐蔽的类终端的PHP webshell · ...
- 软件测试面试必问--bug交互流程
目前市场主要用的bug管理工具:禅道.jira.QC.bugfree等,当然也有自己公司开发的. 不过不管哪一种工具,核心交互流程都是差不多的,只是字段的名称不一样而已,参考如下两张示意图: 这是前几 ...
- tar解压指定文件
import tarfileimport sys#tar = tarfile.open('/opt/platform-omp/omp.tar.gz','r')tar = tarfile.open(r' ...
- 帆软报表(finereport)使用row_number ()进行组内排序
ROW_NUMBER()函数将针对SELECT语句返回的每一行,从1开始编号,赋予其连续的编号.在查询时应用了一个排序标准后,只有通过编号才能够保证其顺序是一致的,当使用ROW_NUMBER函数时,也 ...
- spring-cloud-ribbon负载均衡组件
Ribbon简介: Spring Cloud Ribbon 是一个基于 HTTP 和 TCP 的客户端负载均衡工具,它基于 Netflix Ribbon 实现. 通过 Spring Cloud 的封装 ...
- 基于Vue2.x的小米商城移动端项目
初学vue已经有一段时间,为了检验自己的学习成果,决定做一个项目作为一个阶段性总结,项目花了差不多半个月时间,目前实现了7个页面,商城的主要功能基本实现,代码已经放到github上面. 这个项目把大部 ...