本节主要用一个例子来讲述一下基本的tensorflow用法。

在这个例子中,我们首先伪造一些线性数据点,其实这些数据中本身就隐藏了一些规律,但我们假装不知道是什么规律,然后想通过神经网络来揭示这个规律。

伪造数据

import numpy as np
# 创建100个随机数
x_data = np.random.rand(100).astype(np.float32)
# 创建最终要模拟的线性公式
y_data = x_data * 0.1 + 0.3

创建模型

在伪造数据之后,我们当作不知道这些数据中蕴含的规律,我们只看到有一堆(x, y)的数据,但其中是什么规律我们不知道,但想通过神经网络的方式来揭示其中的规律。

我们觉得这个规律是线性规律,因此需要有权重值和偏置值,并且先随便设置一下其初始值:

import tensorflow as tf

# tensorflow中的变量系数,1维的初始化为从-1到1之间的一个随机数
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
# 偏置,其实就是线性方程中的截距值,1维数据,初始化为0
biases = tf.Variable(tf.zeros([1])) # 在tensorflow中就是根据看到的数值,通过逼近的方式来寻找出数值的规律,最终会把这里的Weights值和biases值设置成接近原始数据中的参数值。
y = Weights * x_data + biases # 计算损失值为预测值和实际值之差平方和的平均值,损失值越小就表示越接近实际值
loss = tf.reduce_mean(tf.square(y - y_data)) # 神经网络要做的就是通过不停地迭代使这个损失值越来越小,而计算越来越小的方法是通过梯度下降算法来实现的
optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss)

上面创建了基本的模型,然后需要开始要启动这个模型了,在启动之前,由于我们创建了几个变量,但只是通知TensorFlow说我们拥有这些变量值,但还未进行实际的赋值,要进行实际的赋值,需要通过:

# 初始化所有变量
init = tf.global_variables_initializer()
sess = tf.Session()
# 激活初始化值
sess.run(init)

不停拟合数据

我们可以通过不停给模型数据,让这个模型逐步降低损失值来达到最能拟合输入值的系数:

for step in range(200):
sess.run(train)
# 每隔20步打印一下模拟出来的权重值和偏置值
if (step % 20 == 0):
print(step, sess.run(Weights), sess.run(biases))

输出为:

0 [ 0.3676317] [ 0.21848023]
20 [ 0.16707394] [ 0.26867095]
40 [ 0.11792699] [ 0.29162663]
60 [ 0.10479139] [ 0.29776204]
80 [ 0.1012806] [ 0.29940188]
100 [ 0.10034226] [ 0.29984015]
120 [ 0.10009148] [ 0.29995728]
140 [ 0.10002445] [ 0.2999886]
160 [ 0.10000654] [ 0.29999697]
180 [ 0.10000175] [ 0.29999918]

从输出结果上来看权重值比较接近于我们原先进行伪造的系数值0.1,而偏置值也比较接近我们伪造的截距值0.3,看来神经网络很好地从一堆数据中揭示了我们预先设置好的规律值。

完整的代码为:

import tensorflow as tf
import numpy as np
# 创建100个随机数
x_data = np.random.rand(100).astype(np.float32)
# 创建最终要模拟的线性公式
y_data = x_data * 0.1 + 0.3 # tensorflow中的变量系数,1维的初始化为从-1到1之间的一个随机数
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
# 偏置,其实就是线性方程中的截距值,1维数据,初始化为0
biases = tf.Variable(tf.zeros([1])) # 在tensorflow中就是根据看到的数值,通过逼近的方式来寻找出数值的规律,最终会把这里的Weights值和biases值设置成接近原始数据中的参数值。
y = Weights * x_data + biases # 计算损失值为预测值和实际值之差平方和的平均值,损失值越小就表示越接近实际值
loss = tf.reduce_mean(tf.square(y - y_data)) # 神经网络要做的就是通过不停地迭代使这个损失值越来越小,而计算越来越小的方法是通过梯度下降算法来实现的
optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) # 初始化所有变量
init = tf.global_variables_initializer()
sess = tf.Session()
# 激活初始化值
sess.run(init) for step in range(200):
sess.run(train)
# 每隔20步打印一下模拟出来的权重值和偏置值
if (step % 20 == 0):
print(step, sess.run(Weights), sess.run(biases))

tensorflow例子-【老鱼学tensorflow】的更多相关文章

  1. tensorflow Tensorboard2-【老鱼学tensorflow】

    前面我们用Tensorboard显示了tensorflow的程序结构,本节主要用Tensorboard显示各个参数值的变化以及损失函数的值的变化. 这里的核心函数有: histogram 例如: tf ...

  2. tensorflow卷积神经网络-【老鱼学tensorflow】

    前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...

  3. tensorflow安装-【老鱼学tensorflow】

    TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,Tensor ...

  4. tensorflow RNN循环神经网络 (分类例子)-【老鱼学tensorflow】

    之前我们学习过用CNN(卷积神经网络)来识别手写字,在CNN中是把图片看成了二维矩阵,然后在二维矩阵中堆叠高度值来进行识别. 而在RNN中增添了时间的维度,因为我们会发现有些图片或者语言或语音等会在时 ...

  5. tensorflow用dropout解决over fitting-【老鱼学tensorflow】

    在机器学习中可能会存在过拟合的问题,表现为在训练集上表现很好,但在测试集中表现不如训练集中的那么好. 图中黑色曲线是正常模型,绿色曲线就是overfitting模型.尽管绿色曲线很精确的区分了所有的训 ...

  6. tensorflow会话控制-【老鱼学tensorflow】

    在tensorflow中,当定义好结构后,就要通过tf.session()来建立运行时的会话. 本例子应该不难理解,我们用tensorflow来计算一下一个1行2列的矩阵和2行1列矩阵的乘积: imp ...

  7. tensorflow变量-【老鱼学tensorflow】

    在程序中定义变量很简单,只要定义一个变量名就可以,但是tensorflow有点类似在另外一个世界,因此需要通过当前的世界中跟tensorlfow的世界中进行通讯,来告诉tensorflow的世界中定义 ...

  8. tensorflow 传入值-【老鱼学tensorflow】

    上个文章中讲述了tensorflow中如何定义变量以及如何读取变量的方式,本节主要讲述关于传入值. 变量主要用于在tensorflow系统中经常会被改变的值,而对于传入值,它只是当tensorflow ...

  9. tensorflow保存读取-【老鱼学tensorflow】

    当我们对模型进行了训练后,就需要把模型保存起来,便于在预测时直接用已经训练好的模型进行预测. 保存模型的权重和偏置值 假设我们已经训练好了模型,其中有关于weights和biases的值,例如: im ...

随机推荐

  1. 洛谷P1608路径统计

    题目 这个提示一个简单的最短路计数,除了用数组存上最短路的个数的做法以外,还有可以在得出最短路之后,搜索加剪枝的方法来通过该题. 可以反向搜索用A*的方法来通过,但是这个题的去重十分的恶心,需要一些玄 ...

  2. 【XSY2988】取石子 博弈论

    题目描述 有 \(n\) 堆石子,每堆石子的个数是 \(c_i\). Alice 和 Bob 轮流取石子(先后手未定),Alice 每次从一堆中取 \(a\) 个,Bob每次从一堆中取 \(b\) 个 ...

  3. re 模块 分组特别说明

    关于分组优先以及 " | " 的细致练习 from django.test import TestCase import re # Create your tests here. ...

  4. this指针详解

    什么是this this是一个const指针,存的是当前对象的地址,指向当前对象,通过this指针可以访问类中的所有成员. 当前对象是指正在使用的对象,比如a.print(),a就是当前对象. 关于t ...

  5. pycharm terminal 'import' 不是内部或外部命令,也不是可运行的程序

    https://blog.csdn.net/jiangyanting2011/article/details/79065778 Python import同级目录报错 pycharm的py文件impo ...

  6. 前端工程师必须要知道的HTTP部分

    1. IETF组织制定的标准 rfc7234: https://tools.ietf.org/html/rfc7234 --- 原来的2616以被废弃 2. 格式 HTTP分为 请求Request 和 ...

  7. CMDB资产管理系统开发【day27】:理解RESTful架构

    理解RESTful架构 越来越多的人开始意识到,网站即软件,而且是一种新型的软件. 这种"互联网软件"采用客户端/服务器模式,建立在分布式体系上,通过互联网通信,具有高延时(hig ...

  8. 类型和原生函数及类型转换(三:终结js类型转换)

    Number() parseInt() parseFloat() Boolean() String() toString() 一.显式类型转换 -------Number()函数把对象的值转换为数字. ...

  9. NOI-OJ 1.13 ID:23 区间内的真素数

    整体思路 这里需要大量使用素数,必须能够想到只求出M到N之间的素数是不够的,因为M到N之间数字的反序有可能是大于M或小于N的数字,例如M=2,N=20,那么19的反序91大于20,所以使用埃拉拖色尼算 ...

  10. DQL用户、权限管理(mysql8.0)

    DQL用户.权限管理(mysql8.0) 查看所有的用户: use mysql; -- 使用mysql数据库 select * from user; -- 查询user表中的全部信息,也就是用户 创建 ...